Item


Insights into the mechanism of the photoinduced Wolff rearrangement of diazonaphthquinone

Diazonaphthoquinone (DNQ) undergoes the light-induced Wolff rearrangement (WR), which is widely applied in the fabrication of photoresists. Based on the vertical excitation spectrum, the WR mechanism of DNQ has been determined by calculating the reaction paths on the ground and excited state potential energy surface at the CASPT2//CASSCF level. The minimum energy paths (MEPs) start from the Franck-Condon structure on the two lowest energy states of ππ* and ππ*NN character. Both paths lead without a barrier to a conical intersection seam between the ground state (S0) and first excited state (S1). The S1/S0 intersection seam is energetically accessible in experiments (with UV of 400 nm or between 300 and 350 nm) and from this seam different species can be formed: the final ketene product of the rearrangement, a carbene intermediate, a diazirine side product, and the reactant DNQ. According to our calculations, the photo-induced WR of DNQ may occur in a nonsynchronous concerted way or via a carbene intermediate. The comprehensive WR mechanism agrees well with previous experimental observations and may have important implications in organic synthesis and photoresists fabrication

Universitat de Girona. Departament de Química

Universitat de Girona. Institut de Química Computacional

Author: Li, Quansong
Date: 2010 July 5
Abstract: Diazonaphthoquinone (DNQ) undergoes the light-induced Wolff rearrangement (WR), which is widely applied in the fabrication of photoresists. Based on the vertical excitation spectrum, the WR mechanism of DNQ has been determined by calculating the reaction paths on the ground and excited state potential energy surface at the CASPT2//CASSCF level. The minimum energy paths (MEPs) start from the Franck-Condon structure on the two lowest energy states of ππ* and ππ*NN character. Both paths lead without a barrier to a conical intersection seam between the ground state (S0) and first excited state (S1). The S1/S0 intersection seam is energetically accessible in experiments (with UV of 400 nm or between 300 and 350 nm) and from this seam different species can be formed: the final ketene product of the rearrangement, a carbene intermediate, a diazirine side product, and the reactant DNQ. According to our calculations, the photo-induced WR of DNQ may occur in a nonsynchronous concerted way or via a carbene intermediate. The comprehensive WR mechanism agrees well with previous experimental observations and may have important implications in organic synthesis and photoresists fabrication
Format: audio/mpeg
video/H263
Citation: Li, Q. (2010). Insights into the mechanism of the photoinduced Wolff rearrangement of diazonaphthquinone. A ’IX Girona Seminar’. Girona: Universitat. [Consulta 3 setembre 2010]. Disponible a: http://hdl.handle.net/10256.1/1678
Document access: http://hdl.handle.net/10256.1/1678
Language: eng
Publisher: Universitat de Girona. Departament de Química
Universitat de Girona. Institut de Química Computacional
Collection: IX Girona Seminar
Rights: Aquest document està subjecte a una llicència Creative Commons: Reconeixement - No comercial - Compartir igual (by-nc-sa)
Rights URI: http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.ca
Subject: Química quàntica -- Congressos
Quantum chemistry -- Congresses
Title: Insights into the mechanism of the photoinduced Wolff rearrangement of diazonaphthquinone
Type: info:eu-repo/semantics/lecture
Repository: DUGiMedia

Subjects

Authors


Warning: Unknown: write failed: No space left on device (28) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php5) in Unknown on line 0