Ítem


Energy and entropy decomposition using the electron density

Chemists often classify chemical interactions as being dominated by some sort of interaction; among the most popular and useful classifications are steric, polarization, charge-transfer, electron-pairing, and electrostatic interactions. In real molecular processes, of course, each of these effects contributes, although often one dominates. This talk will focus on how one may use density-functional theory (DFT) to define, quantify, and compute these interactions. The most straightforward approach is DFT-based energy decomposition analysis; this provides a full decomposition of the energy into steric, polarization, charge-transfer, electrostatic, and electron-pairing (covalent bond formation) contributions. One advantage of the DFT-based approach is that it is insensitive to basis set and it can be applied at any level of theory (beyond single Slater determinants). Another approach is based on partitioning the Kullback- Liebler entropy into charge-transfer (“mixing”) and polarization (“deformation”) terms. Both approaches can be combined with a Hirshfeld-style population analysis method. Unlike many other approaches, these methods appear to provide a clean (but obviously nonunique) separation between charge-transfer and polarization effects

Universitat de Girona. Departament de Química

Universitat de Girona. Institut de Química Computacional

Autor: Ayers, Paul
Data: 5 juliol 2010
Resum: Chemists often classify chemical interactions as being dominated by some sort of interaction; among the most popular and useful classifications are steric, polarization, charge-transfer, electron-pairing, and electrostatic interactions. In real molecular processes, of course, each of these effects contributes, although often one dominates. This talk will focus on how one may use density-functional theory (DFT) to define, quantify, and compute these interactions. The most straightforward approach is DFT-based energy decomposition analysis; this provides a full decomposition of the energy into steric, polarization, charge-transfer, electrostatic, and electron-pairing (covalent bond formation) contributions. One advantage of the DFT-based approach is that it is insensitive to basis set and it can be applied at any level of theory (beyond single Slater determinants). Another approach is based on partitioning the Kullback- Liebler entropy into charge-transfer (“mixing”) and polarization (“deformation”) terms. Both approaches can be combined with a Hirshfeld-style population analysis method. Unlike many other approaches, these methods appear to provide a clean (but obviously nonunique) separation between charge-transfer and polarization effects
Format: audio/mpeg
video/H263
Cita: Ayers, P. (2010). Energy and entropy decomposition using the electron density. A ’IX Girona Seminar’. Girona: Universitat. [Consulta 3 setembre 2010]. Disponible a: http://hdl.handle.net/10256.1/1693
Accés al document: http://hdl.handle.net/10256.1/1693
Llenguatge: eng
Editor: Universitat de Girona. Departament de Química
Universitat de Girona. Institut de Química Computacional
Col·lecció: IX Girona Seminar
Drets: Aquest document està subjecte a una llicència Creative Commons: Reconeixement - No comercial - Compartir igual (by-nc-sa)
URI Drets: http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.ca
Matèria: Química quàntica -- Congressos
Quantum chemistry -- Congresses
Títol: Energy and entropy decomposition using the electron density
Tipus: info:eu-repo/semantics/lecture
Repositori: DUGiMedia

Matèries

Autors