Item


Energy and entropy decomposition using the electron density

Chemists often classify chemical interactions as being dominated by some sort of interaction; among the most popular and useful classifications are steric, polarization, charge-transfer, electron-pairing, and electrostatic interactions. In real molecular processes, of course, each of these effects contributes, although often one dominates. This talk will focus on how one may use density-functional theory (DFT) to define, quantify, and compute these interactions. The most straightforward approach is DFT-based energy decomposition analysis; this provides a full decomposition of the energy into steric, polarization, charge-transfer, electrostatic, and electron-pairing (covalent bond formation) contributions. One advantage of the DFT-based approach is that it is insensitive to basis set and it can be applied at any level of theory (beyond single Slater determinants). Another approach is based on partitioning the Kullback- Liebler entropy into charge-transfer (“mixing”) and polarization (“deformation”) terms. Both approaches can be combined with a Hirshfeld-style population analysis method. Unlike many other approaches, these methods appear to provide a clean (but obviously nonunique) separation between charge-transfer and polarization effects

Universitat de Girona. Departament de Química

Universitat de Girona. Institut de Química Computacional

Author: Ayers, Paul
Date: 2010 July 5
Abstract: Chemists often classify chemical interactions as being dominated by some sort of interaction; among the most popular and useful classifications are steric, polarization, charge-transfer, electron-pairing, and electrostatic interactions. In real molecular processes, of course, each of these effects contributes, although often one dominates. This talk will focus on how one may use density-functional theory (DFT) to define, quantify, and compute these interactions. The most straightforward approach is DFT-based energy decomposition analysis; this provides a full decomposition of the energy into steric, polarization, charge-transfer, electrostatic, and electron-pairing (covalent bond formation) contributions. One advantage of the DFT-based approach is that it is insensitive to basis set and it can be applied at any level of theory (beyond single Slater determinants). Another approach is based on partitioning the Kullback- Liebler entropy into charge-transfer (“mixing”) and polarization (“deformation”) terms. Both approaches can be combined with a Hirshfeld-style population analysis method. Unlike many other approaches, these methods appear to provide a clean (but obviously nonunique) separation between charge-transfer and polarization effects
Format: audio/mpeg
video/H263
Citation: Ayers, P. (2010). Energy and entropy decomposition using the electron density. A ’IX Girona Seminar’. Girona: Universitat. [Consulta 3 setembre 2010]. Disponible a: http://hdl.handle.net/10256.1/1693
Document access: http://hdl.handle.net/10256.1/1693
Language: eng
Publisher: Universitat de Girona. Departament de Química
Universitat de Girona. Institut de Química Computacional
Collection: IX Girona Seminar
Rights: Aquest document està subjecte a una llicència Creative Commons: Reconeixement - No comercial - Compartir igual (by-nc-sa)
Rights URI: http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.ca
Subject: Química quàntica -- Congressos
Quantum chemistry -- Congresses
Title: Energy and entropy decomposition using the electron density
Type: info:eu-repo/semantics/lecture
Repository: DUGiMedia

Subjects

Authors


Warning: Unknown: write failed: No space left on device (28) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php5) in Unknown on line 0