Item


Applying quantum chemistry to solids and liquids

Electronic structure studies of crystalline solids are dominated by density functional theory (DFT), which has proved capable of providing many powerful insights. Nevertheless, using conventional local, gradient corrected or hybrid functionals, these have a number of short-comings. Perhaps most seriously there is no clear route for systematic improvement of accuracy. A number of wavefunction-based methods have been developed to model crystalline solids, including quantum Monte Carlo and techniques that extend quantum chemical electronic structure methods to include periodic boundary conditions, with recent focus on periodic MP2 implementations. This talk concentrates on alternative methods which seek to address the electron correlation problem in solids using molecular electronic structure calculations on fragments. We outline the incremental scheme (or method of increments) and a hierarchial method. The chief advantage of such schemes over full periodic implementations is their simplicity, and the straightforward extension to more advanced electronic structure methods. We describe some recent applications including solid LiH, LiF, HF and crystalline neon. Liquids present further challenges for any theoretical method. We describe a many-body expansion technique aimed directly at the simulation of molecular liquids. We employ the many-body expansion to reduce the problem to a set of calculations on dimers, trimers etc., and we treat higher-order effects through a polarizable model which uses ab initio properties. MP2-level radial distribution functions for liquid water are presented

Universitat de Girona. Departament de Química

Universitat de Girona. Institut de Química Computacional

Author: Allan, Neil
Date: 2010 July 7
Abstract: Electronic structure studies of crystalline solids are dominated by density functional theory (DFT), which has proved capable of providing many powerful insights. Nevertheless, using conventional local, gradient corrected or hybrid functionals, these have a number of short-comings. Perhaps most seriously there is no clear route for systematic improvement of accuracy. A number of wavefunction-based methods have been developed to model crystalline solids, including quantum Monte Carlo and techniques that extend quantum chemical electronic structure methods to include periodic boundary conditions, with recent focus on periodic MP2 implementations. This talk concentrates on alternative methods which seek to address the electron correlation problem in solids using molecular electronic structure calculations on fragments. We outline the incremental scheme (or method of increments) and a hierarchial method. The chief advantage of such schemes over full periodic implementations is their simplicity, and the straightforward extension to more advanced electronic structure methods. We describe some recent applications including solid LiH, LiF, HF and crystalline neon. Liquids present further challenges for any theoretical method. We describe a many-body expansion technique aimed directly at the simulation of molecular liquids. We employ the many-body expansion to reduce the problem to a set of calculations on dimers, trimers etc., and we treat higher-order effects through a polarizable model which uses ab initio properties. MP2-level radial distribution functions for liquid water are presented
Format: video/H263
audio/mpeg
Citation: Allan, N. (2010). Applying quantum chemistry to solids and liquids. A ’IX Girona Seminar’. Girona: Universitat. [Consulta 6 setembre 2010]. Disponible a: http://hdl.handle.net/10256.1/1722
Document access: http://hdl.handle.net/10256.1/1722
Language: eng
Publisher: Universitat de Girona. Departament de Química
Universitat de Girona. Institut de Química Computacional
Collection: IX Girona Seminar
Rights: Aquest document està subjecte a una llicència Creative Commons: Reconeixement - No comercial - Compartir igual (by-nc-sa)
Rights URI: http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.ca
Subject: Química quàntica -- Congressos
Quantum chemistry -- Congresses
Title: Applying quantum chemistry to solids and liquids
Type: info:eu-repo/semantics/lecture
Repository: DUGiMedia

Subjects

Authors


Warning: Unknown: write failed: No space left on device (28) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php5) in Unknown on line 0