Ítem


Constraint Modelling with LLMs using In-Context Learning

Kostis Michailidis from KU Leuven in Belgium, tells that the Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this paper, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We investigate different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and on a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities

7764.mp4 7764.mp3

Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística

Altres contribucions: Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística
Autor: Michailidis, Kostis
Tsouros, Dimos
Guns, Tias
Data: 3 setembre 2024
Resum: Kostis Michailidis from KU Leuven in Belgium, tells that the Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this paper, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We investigate different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and on a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities
7764.mp4 7764.mp3
Format: audio/mpeg
video/mp4
Accés al document: http://hdl.handle.net/10256.1/7764
Llenguatge: eng
Editor: Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística
Col·lecció: 30th International Conference on Principles and Practice of Constraint Programming
Drets: Attribution-NonCommercial-ShareAlike 4.0 International
URI Drets: http://creativecommons.org/licenses/by-nc-sa/4.0/
Matèria: Programació per restriccions (Informàtica) -- Congressos
Constraint programming (Computer science) -- Congresses
Títol: Constraint Modelling with LLMs using In-Context Learning
Tipus: info:eu-repo/semantics/lecture
Repositori: DUGiMedia

Matèries

Autors