Ítem
Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística | |
Kirchweger, Markus
Szeider, Stefan |
|
3 setembre 2024 | |
Markus Kirchweger from the Vienna University of Technology, tells that envy-freeness up to any good (EFX) is a key concept in Computational Social Choice for the fair division of indivisible goods, where no agent envies another’s allocation after removing any single item. A deeper understanding of EFX allocations is facilitated by exploring the rainbow cycle number ($R_f(d)$), the largest number of independent sets in a certain class of directed graphs. Upper bounds on $R_f(d)$ provide guarantees the feasibility of EFX allocations (Chaudhury et al., EC 2021).
In this work, we precisely compute the numbers $R_f(d)$ for small values of d, employing the SAT modulo Symmetries framework. SAT modulo Symmetries is specifically tailored for the constraint-based isomorph-free generation of combinatorial structures. We provide an efficient encoding for the rainbow cycle number, comparing eager and lazy approaches. To cope with the huge search space, we extend the encoding with invariant pruning, a new method that significantly speeds up computation 7780.mp4 7780.mp3 |
|
audio/mpeg video/mp4 |
|
http://hdl.handle.net/10256.1/7780 | |
eng | |
Universitat de Girona. Departament d’Informàtica, Matemàtica Aplicada i Estadística | |
30th International Conference on Principles and Practice of Constraint Programming | |
Attribution-NonCommercial-ShareAlike 4.0 International | |
http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
Programació per restriccions (Informàtica) -- Congressos
Constraint programming (Computer science) -- Congresses |
|
Computing small Rainbow Cycle Numbers with SAT modulo Symmetries | |
info:eu-repo/semantics/lecture | |
DUGiMedia |