Item


Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths

his paper presents investigations on the effects of nanosecond laser processing parameters on depth and width of microchannels fabricated from polymethylmethacrylate (PMMA) polymer. A neodymium-doped yttrium aluminium garnet pulsed laser with a fundamental wavelength of 1,064 nm and a third harmonic wavelength of 355 nm with pulse duration of 5 ns is utilized. Hence, experiments are conducted at near-infrared (NIR) and ultraviolet (UV) wavelengths. The laser processing parameters of pulse energy (402-415 mJ at NIR and 35-73 mJ at UV wavelengths), pulse frequency (8-11 Hz), focal spot size (140-190 μm at NIR and 75 μm at UV wavelengths) and scanning rate (400-800 pulse/mm at NIR and 101-263 pulse/mm at UV wavelengths) are varied to obtain a wide range of fluence and processing rate. Microchannel width and depth profile are measured, and main effects plots are obtained to identify the effects of process parameters on channel geometry (width and depth) and material removal rate. The relationship between process variables (width and depth of laser-ablated microchannels) and process parameters is investigated. It is observed that channel width (140-430 μm at NIR and 100-150 μm at UV wavelengths) and depth (30-120 μm at NIR and 35-75 μm at UV wavelengths) decreased linearly with increasing fluence and increased non-linearly with increasing scanning rate. It is also observed that laser processing at UV wavelength provided more consistent channel profiles at lower fluences due to higher laser absorption of PMMA at this wavelength. Mathematical modeling for predicting microchannel profile was developed and validated with experimental results obtained with pulsed laser micromachining at NIR and UV wavelengths

Springer Verlag

Author: Teixidor Ezpeleta, Daniel
Orozco, Francisco
Thepsonthi, Thanongsak
Ciurana, Quim de
Rodríguez González, Ciro Ángel
Özel, Tuǧrul
Date: 2013
Abstract: his paper presents investigations on the effects of nanosecond laser processing parameters on depth and width of microchannels fabricated from polymethylmethacrylate (PMMA) polymer. A neodymium-doped yttrium aluminium garnet pulsed laser with a fundamental wavelength of 1,064 nm and a third harmonic wavelength of 355 nm with pulse duration of 5 ns is utilized. Hence, experiments are conducted at near-infrared (NIR) and ultraviolet (UV) wavelengths. The laser processing parameters of pulse energy (402-415 mJ at NIR and 35-73 mJ at UV wavelengths), pulse frequency (8-11 Hz), focal spot size (140-190 μm at NIR and 75 μm at UV wavelengths) and scanning rate (400-800 pulse/mm at NIR and 101-263 pulse/mm at UV wavelengths) are varied to obtain a wide range of fluence and processing rate. Microchannel width and depth profile are measured, and main effects plots are obtained to identify the effects of process parameters on channel geometry (width and depth) and material removal rate. The relationship between process variables (width and depth of laser-ablated microchannels) and process parameters is investigated. It is observed that channel width (140-430 μm at NIR and 100-150 μm at UV wavelengths) and depth (30-120 μm at NIR and 35-75 μm at UV wavelengths) decreased linearly with increasing fluence and increased non-linearly with increasing scanning rate. It is also observed that laser processing at UV wavelength provided more consistent channel profiles at lower fluences due to higher laser absorption of PMMA at this wavelength. Mathematical modeling for predicting microchannel profile was developed and validated with experimental results obtained with pulsed laser micromachining at NIR and UV wavelengths
Format: application/pdf
Document access: http://hdl.handle.net/10256/10181
Language: eng
Publisher: Springer Verlag
Collection: info:eu-repo/semantics/altIdentifier/doi/10.1007/s00170-012-4598-x
info:eu-repo/semantics/altIdentifier/issn/0268-3768
info:eu-repo/semantics/altIdentifier/eissn/1433-3015
info:eu-repo/grantAgreement/EC/FP7/247476/EU/INTERNATIONAL RESEARCH EXCHANGE FOR BIOMEDICAL DEVICES DESIGN AND PROTOTYPING/IREBID
Rights: Tots els drets reservats
Subject: Ablació amb làser
Laser ablation
Biopolímers
Biopolymers
Microfabricació
Microfabrication
Title: Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths
Type: info:eu-repo/semantics/article
Repository: DUGiDocs

Subjects

Authors