Item


Oxidation states from wave function analysis

We introduce a simple and general scheme to derive from wavefuntion analysis the most appropriate atomic/fragment electron configurations in a molecular system, from which oxidation states can be inferred. The method can be applied for any level of theory for which the first-order density matrix is available, and unlike others, it is not restricted to transition metal complexes. The method relies on the so-called spin-resolved effective atomic orbitals which for the present purpose is extended here to deal with molecular fragments/ligands. We describe in detail the most important points of the new scheme, in particular the hierarchical fragment approach devised for practical applications. A number of transition metal complexes with different formal oxidation states and spin states and a set of organic and inorganic compounds are provided as illustrative examples of the new scheme. Challenging systems such as transition state structures are also tackled on equal footing

Financial help from projects CTQ2011-23441/BQU, UNGI08-4E-003, and SGR528 is acknowledged. E.R-C. acknowledges support from Grant No. AP2008-01231 and from CIG No. PCI09-GA-2011-294240. V.P. acknowledges support from Grant No. BES-2012-052801 and from CTQ2011-23156/BQU

info:eu-repo/grantAgreement/MICINN//CTQ2011-23441/ES/NUEVOS ENFOQUES PARA EL ESTUDIO COMPUTACIONAL DE BIOMOLECULAS, INTERACCIONES DE ESPIN EN AGREGADOS METALICOS Y SISTEMAS MOLECULARES DE ALMACENAMIENTO DE HIDROGENO/

American Chemical Society (ACS)

Manager: Ministerio de Ciencia e Innovaci贸n (Espanya)
Ministerio de Educaci贸n y Ciencia (Espanya)
Generalitat de Catalunya. Ag猫ncia de Gesti贸 d鈥橝juts Universitaris i de Recerca
Author: Ramos Cordoba, Eloy
Postils Rib贸, Ver貌nica
Salvador Sedano, Pedro
Date: 2015 April 14
Abstract: We introduce a simple and general scheme to derive from wavefuntion analysis the most appropriate atomic/fragment electron configurations in a molecular system, from which oxidation states can be inferred. The method can be applied for any level of theory for which the first-order density matrix is available, and unlike others, it is not restricted to transition metal complexes. The method relies on the so-called spin-resolved effective atomic orbitals which for the present purpose is extended here to deal with molecular fragments/ligands. We describe in detail the most important points of the new scheme, in particular the hierarchical fragment approach devised for practical applications. A number of transition metal complexes with different formal oxidation states and spin states and a set of organic and inorganic compounds are provided as illustrative examples of the new scheme. Challenging systems such as transition state structures are also tackled on equal footing
Financial help from projects CTQ2011-23441/BQU, UNGI08-4E-003, and SGR528 is acknowledged. E.R-C. acknowledges support from Grant No. AP2008-01231 and from CIG No. PCI09-GA-2011-294240. V.P. acknowledges support from Grant No. BES-2012-052801 and from CTQ2011-23156/BQU
Format: application/pdf
Document access: http://hdl.handle.net/10256/11353
Language: eng
Publisher: American Chemical Society (ACS)
Collection: info:eu-repo/semantics/altIdentifier/doi/10.1021/ct501088v
info:eu-repo/semantics/altIdentifier/issn/1549-9618
info:eu-repo/semantics/altIdentifier/eissn/1549-9626
info:eu-repo/grantAgreement/MICINN//CTQ2011-23156/ES/AVANCES EN CATALISIS Y AROMATICIDAD/
info:eu-repo/grantAgreement/MEC//UNGI08-4E-003/ES/Cl煤ster de PCs para c谩lculo intensivo en qu铆mica cu谩ntica/
AGAUR/2009-2014/2009 SGR-528
info:eu-repo/grantAgreement/EC/FP7/294240/EU/Development of new non-empirical DFT functionals./NEWDFTFUNCT
Is part of: info:eu-repo/grantAgreement/MICINN//CTQ2011-23441/ES/NUEVOS ENFOQUES PARA EL ESTUDIO COMPUTACIONAL DE BIOMOLECULAS, INTERACCIONES DE ESPIN EN AGREGADOS METALICOS Y SISTEMAS MOLECULARES DE ALMACENAMIENTO DE HIDROGENO/
Rights: Tots els drets reservats
Subject: Orbitals moleculars
Molecular orbitals
Mec脿nica ondulat貌ria
Wave mechanics
Title: Oxidation states from wave function analysis
Type: info:eu-repo/semantics/article
Repository: DUGiDocs

Subjects

Authors