Item
Coll Arnau, NarcÃs
Guerrieri, MaritÃ© Rivara, Maria Cecilia SellarÃ¨s i Chiva, Joan Antoni 

2011  
We propose and discuss a new Leppsurface method able to produce a small triangular approximation of huge sets of terrain grid data by using a twogoal strategy that assures both small approximation error and wellshaped 3D triangles. This is a refinement method which starts with a coarse initial triangulation of the input data, and incrementally selects and adds data points into the mesh as follows: for the edge e having the highest error in the mesh, one or two points close to (one or two) terminal edges associated with e are inserted in the mesh. The edge error is computed by adding the triangle approximation errors of the two triangles that share e, while each L2norm triangle error is computed by using a curvature tensor (a good approximation of the surface) at a representative point associated with both triangles. The method produces triangular approximations that capture well the relevant features of the terrain surface by naturally producing wellshaped triangles. We compare our method with a pure L2norm optimization method The first, second and fourth authors were partially supported by the Spanish Ministerio de Educacion y Ciencia under grant TIN201020590C0202 

application/pdf  
03770427  
http://hdl.handle.net/10256/11991  
eng  
Elsevier  
MICINN/PN 20112013/TIN201020590C0202 ReproducciÃ³ digital del document publicat a: http://dx.doi.org/10.1016/j.cam.2011.09.005 Articles publicats (DIMA) 

Â© Journal of Computational and Applied Mathematics, 2011, vol. 236, nÃºm. 6, p. 14101422  
Tots els drets reservats  
Infografia
Computer graphics VisualitzaciÃ³ tridimensional (InformÃ tica) Threedimensional display systems 

Adaptive simplification of huge sets of terrain grid data for geosciences applications  
info:eurepo/semantics/article  
DUGiDocs 