Item


Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control

Applications involving the use of thermoelectric materials can be found in many different areas ranging from thermocouple sensors, portable coolers, to solar power generators. Generally, they can be subdivided by the direction of energy conversion. While the Peltier effect is used in solid-state refrigeration, the Seebeck effect is responsible for the conversion of temperature gradients into electrical voltage in energy harvesting systems. However, this paper proposes a novel approach to the use of thermoelectric couples, treating them as variable insulators in thermal systems. Here, we demonstrate that thermal conductivity in thermoelectric materials can be externally controlled by electrical parameters such as electrical load or DC voltage in passive and active systems, respectively. Active mode is a good solution when a complete insulation or a high control of thermal conductivity is needed. Passive mode permits a thermal conductivity increment of 1. +. ZTtimes with respect to semiconductor initial thermal conductivity. Results open new doors and new opportunities for thermoelectric materials

This work has been partially funded by the Generalitat de Catalunya under Grant No. 2014-SGR-36 and the MICINN-FEDER under Grants No. FIS-2012-31307. Authors would also like to thank Association of Industrial Engineers of Catalonia (AEIC) for they partial financial support

Elsevier

Manager: Ministerio de Ciencia e Innovación (Espanya)
Generalitat de Catalunya. Agència de Gestió d’Ajuts Universitaris i de Recerca
Author: Massaguer Colomer, Albert
Massaguer Colomer, Eduard
Pujol i Sagaró, Toni
Comamala Laguna, Martí
Montoro Moreno, Lino
González Castro, Josep R.
Date: 2015
Abstract: Applications involving the use of thermoelectric materials can be found in many different areas ranging from thermocouple sensors, portable coolers, to solar power generators. Generally, they can be subdivided by the direction of energy conversion. While the Peltier effect is used in solid-state refrigeration, the Seebeck effect is responsible for the conversion of temperature gradients into electrical voltage in energy harvesting systems. However, this paper proposes a novel approach to the use of thermoelectric couples, treating them as variable insulators in thermal systems. Here, we demonstrate that thermal conductivity in thermoelectric materials can be externally controlled by electrical parameters such as electrical load or DC voltage in passive and active systems, respectively. Active mode is a good solution when a complete insulation or a high control of thermal conductivity is needed. Passive mode permits a thermal conductivity increment of 1. +. ZTtimes with respect to semiconductor initial thermal conductivity. Results open new doors and new opportunities for thermoelectric materials
This work has been partially funded by the Generalitat de Catalunya under Grant No. 2014-SGR-36 and the MICINN-FEDER under Grants No. FIS-2012-31307. Authors would also like to thank Association of Industrial Engineers of Catalonia (AEIC) for they partial financial support
Format: application/pdf
Document access: http://hdl.handle.net/10256/12202
Language: eng
Publisher: Elsevier
Collection: info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apenergy.2015.05.067
info:eu-repo/semantics/altIdentifier/issn/0306-2619
info:eu-repo/grantAgreement/MINECO//FIS2012-31307/ES/PROPAGACION DE FRENTES EN SISTEMAS COMPLEJOS MULTIDISCIPLINARES/
AGAUR/2014-2016/2014 SGR-36
Rights: Tots els drets reservats
Subject: Materials termoelèctrics
Thermoelectric materials
Termoelectricitat
Thermoelectricity
Conductivitat tèrmica
Title: Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control
Type: info:eu-repo/semantics/article
Repository: DUGiDocs

Subjects

Authors


Warning: Unknown: write failed: No space left on device (28) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php5) in Unknown on line 0