Item


Design of FRP reinforced concrete beams for serviceability requirements

Serviceability Limit States (SLS) may govern the design of concrete elements internally reinforced with Fibre Reinforced Polymer (FRP) bars because of the mechanical properties of FRP materials. This paper investigates the design of Fibre Reinforced Polymer reinforced concrete (FRP RC) beams under the SLS of cracking, stresses in materials, and deflections. A formulation to calculate the bending condition at which crack width and stresses in materials requirements are fulfilled is presented based on principles of equilibrium, strain compatibility and linear elastic behaviour of materials. The slenderness limits to comply with the deflection limitation are redefined and a methodology to calculate the optimal height of an FRP RC beam to satisfy all of these serviceability requirements is proposed. This procedure allows optimising the dimensions of an FRP RC beam taking into account the specific characteristics of the element, such as the mechanical properties of materials and the geometric and loading conditions

The authors acknowledge the support provided by the Spanish Government (Ministerio de Ciencia e Innovación), Project ref. BIA2010-20234-C03-02

© Journal of Civil Engineering and Management, 2012, vol. 18, núm. 6, p. 843-857

Taylor and Francis

Author: Barris Peña, Cristina
Torres Llinàs, Lluís
Miàs Oller, Cristina
Vilanova Marco, Irene
Date: 2012 November 20
Abstract: Serviceability Limit States (SLS) may govern the design of concrete elements internally reinforced with Fibre Reinforced Polymer (FRP) bars because of the mechanical properties of FRP materials. This paper investigates the design of Fibre Reinforced Polymer reinforced concrete (FRP RC) beams under the SLS of cracking, stresses in materials, and deflections. A formulation to calculate the bending condition at which crack width and stresses in materials requirements are fulfilled is presented based on principles of equilibrium, strain compatibility and linear elastic behaviour of materials. The slenderness limits to comply with the deflection limitation are redefined and a methodology to calculate the optimal height of an FRP RC beam to satisfy all of these serviceability requirements is proposed. This procedure allows optimising the dimensions of an FRP RC beam taking into account the specific characteristics of the element, such as the mechanical properties of materials and the geometric and loading conditions
The authors acknowledge the support provided by the Spanish Government (Ministerio de Ciencia e Innovación), Project ref. BIA2010-20234-C03-02
Format: application/pdf
ISSN: 1392-3730 (versió paper)
1822-3605 (versió electrònica)
Document access: http://hdl.handle.net/10256/13674
Language: eng
Publisher: Taylor and Francis
Collection: MICINN/PN 2011-2013/BIA2010-20234-C03-02
Reproducció digital del document publicat a: http://dx.doi.org/10.3846/13923730.2012.720934
Articles publicats (D-EMCI)
Is part of: © Journal of Civil Engineering and Management, 2012, vol. 18, núm. 6, p. 843-857
Rights: Tots els drets reservats
Subject: Bigues de formigó
Concrete beams
Formigó armat
Reinforced concrete
Formigó armat -- Fissuració
Reinforced concrete -- Cracking
Title: Design of FRP reinforced concrete beams for serviceability requirements
Type: info:eu-repo/semantics/article
Repository: DUGiDocs

Subjects

Authors