Ítem


Multiple Sclerosis Lesion Synthesis in MRI Using an Encoder-Decoder U-NET

In this paper, we propose generating synthetic multiple sclerosis (MS) lesions on MRI images with the final aim to improve the performance of supervised machine learning algorithms, therefore avoiding the problem of the lack of available ground truth. We propose a two-input two-output fully convolutional neural network model for MS lesion synthesis in MRI images. The lesion information is encoded as discrete binary intensity level masks passed to the model and stacked with the input images. The model is trained end-to-end without the need for manually annotating the lesions in the training set. We then perform the generation of synthetic lesions on healthy images via registration of patient images, which are subsequently used for data augmentation to increase the performance for supervised MS lesion detection algorithms. Our pipeline is evaluated on MS patient data from an in-house clinical dataset and the public ISBI2015 challenge dataset. The evaluation is based on measuring the similarities between the real and the synthetic images as well as in terms of lesion detection performance by segmenting both the original and synthetic images individually using a state-of-the-art segmentation framework. We also demonstrate the usage of synthetic MS lesions generated on healthy images as data augmentation. We analyze a scenario of limited training data (one-image training) to demonstrate the effect of the data augmentation on both datasets. Our results significantly show the effectiveness of the usage of synthetic MS lesion images. For the ISBI2015 challenge, our one-image model trained using only a single image plus the synthetic data augmentation strategy showed a performance similar to that of other CNN

This work was supported by the Retos de Investigación from the Ministerio de Ciencia y Tecnología under Grant TIN2014- 55710-R and Grant DPI2017-86696-R

Institute of Electrical and Electronics Engineers (IEEE)

Director: Ministerio de Economía y Competitividad (Espanya)
Autor: Salem, Mostafa
Valverde Valverde, Sergi
Cabezas Grebol, Mariano
Pareto, Deborah
Oliver i Malagelada, Arnau
Salvi, Joaquim
Rovira, Àlex
Lladó Bardera, Xavier
Data: 20 febrer 2019
Resum: In this paper, we propose generating synthetic multiple sclerosis (MS) lesions on MRI images with the final aim to improve the performance of supervised machine learning algorithms, therefore avoiding the problem of the lack of available ground truth. We propose a two-input two-output fully convolutional neural network model for MS lesion synthesis in MRI images. The lesion information is encoded as discrete binary intensity level masks passed to the model and stacked with the input images. The model is trained end-to-end without the need for manually annotating the lesions in the training set. We then perform the generation of synthetic lesions on healthy images via registration of patient images, which are subsequently used for data augmentation to increase the performance for supervised MS lesion detection algorithms. Our pipeline is evaluated on MS patient data from an in-house clinical dataset and the public ISBI2015 challenge dataset. The evaluation is based on measuring the similarities between the real and the synthetic images as well as in terms of lesion detection performance by segmenting both the original and synthetic images individually using a state-of-the-art segmentation framework. We also demonstrate the usage of synthetic MS lesions generated on healthy images as data augmentation. We analyze a scenario of limited training data (one-image training) to demonstrate the effect of the data augmentation on both datasets. Our results significantly show the effectiveness of the usage of synthetic MS lesion images. For the ISBI2015 challenge, our one-image model trained using only a single image plus the synthetic data augmentation strategy showed a performance similar to that of other CNN
This work was supported by the Retos de Investigación from the Ministerio de Ciencia y Tecnología under Grant TIN2014- 55710-R and Grant DPI2017-86696-R
Format: application/pdf
Accés al document: http://hdl.handle.net/10256/18098
Llenguatge: eng
Editor: Institute of Electrical and Electronics Engineers (IEEE)
Col·lecció: info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2900198
info:eu-repo/semantics/altIdentifier/issn/2169-3536
info:eu-repo/grantAgreement/MINECO//TIN2014-55710-R/ES/HERRAMIENTAS DE NEUROIMAGEN PARA MEJORAR EL DIAGNOSIS Y EL SEGUIMIENTO CLINICO DE LOS PACIENTES CON ESCLEROSIS MULTIPLE/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-86696-R/ES/MODELOS PREDICTIVOS PARA LA ESCLEROSIS MULTIPE USANDO BIOMARCADORES DE RESONANCIA MAGNETICA DEL CEREBRO/
Drets: Tots els drets reservats
Matèria: Esclerosi múltiple
Multiple sclerosis
Automatització
Automation
Imatges -- Processament
Image processing
Imatgeria mèdica
Imaging systems in medicine
Imatgeria per ressonància magnètica
Magnetic resonance imaging
Títol: Multiple Sclerosis Lesion Synthesis in MRI Using an Encoder-Decoder U-NET
Tipus: info:eu-repo/semantics/article
Repositori: DUGiDocs

Matèries

Autors