Ítem


Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways

Background Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. Methods We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. Results An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor’s bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient’s mice. Conclusion These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.

This work was partially supported by research grants FIS (PI15/01934 and PI18/01022) from the Instituto de Salud Carlos III from Spain, SAF2015- 65878-R and #AEI-SAF2017-84060-R-FEDER from Ministry of Economy and Competitiveness, Prometeo/2018/A/133 from Generalitat Valenciana, Spain; and also by Fondo Europeo de Desarrollo Regional (FEDER) funds, European Commission (FP7, NeuroPain #2013-602891), the Catalan Government (AGAUR, #SGR2017-669, ICREA Academia Award 2015), the Spanish Instituto de Salud Carlos III (RTA, #RD16/0017/0020), the Spanish Ministry of Science, Innovation and Universities (RTI2018-099200-B-I00), the Catalan Goverment (Agency for Management of University and Research Grants [2017SGR696] and Department of Health [STL002/16/00250]; the European Regional Development Fund (project No. 01.2.2-LMT-K-718-02-0014) under grant agreement with the Research Council of Lithuania (LMTLT); and the Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A SpainFrance-Andorra programme (POCTEFA 2014-2020). MA-R is funded by a predoctoral Río Hortega contract from the Instituto de Salud Carlos III (ISCIII, CM19/00190), co-funded by the European Social Fund “Investing in your future”. OC-R is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP20/00165), co-funded by the Europeran Social Fund "Investing in your future". JM-P is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP18/00009), co-funded by the European Social Fund “Investing in your future”. JS is funded by a predoctoral PERIS contract (SLT002/16/00250) from the Catalan Government. MJ is a professor under the “Serra Hunter” programme (Generalitat de Catalunya

BMJ Publishing Group

Autor: Arnoriaga Rodríguez, María
Mayneris Perxachs, Jordi
Contreras-Rodríguez, Oren
Burokas, Aurelijus
Ortega Sanchez, Juan Antonio
Blasco Solà, Gerard
Coll-Martinez, Clàudia
Biarnés, Carles
Castells Nobau, Anna
Puig Alcántara, Josep
Garre Olmo, Josep
Ramos Blanes, Rafel
Pedraza, S.
Brugada, Ramon
Vilanova, Joan Carles
Serena, Joaquín
Barretina, Jordi
Gich Fullà, Jordi
Pérez Brocal, Vicente
Moya, Andrés
Fernández-Real, Xavier
Ramió i Torrentà, Lluís
Pamplona, Reinald
Sol, Joaquim
Jové, Mariona
Ricart, Wifredo
Portero Otin, Manuel
Maldonado, Rafael
Fernández-Real Lemos, José Manuel
Data: 29 gener 2021
Resum: Background Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. Methods We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. Results An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor’s bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient’s mice. Conclusion These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.
This work was partially supported by research grants FIS (PI15/01934 and PI18/01022) from the Instituto de Salud Carlos III from Spain, SAF2015- 65878-R and #AEI-SAF2017-84060-R-FEDER from Ministry of Economy and Competitiveness, Prometeo/2018/A/133 from Generalitat Valenciana, Spain; and also by Fondo Europeo de Desarrollo Regional (FEDER) funds, European Commission (FP7, NeuroPain #2013-602891), the Catalan Government (AGAUR, #SGR2017-669, ICREA Academia Award 2015), the Spanish Instituto de Salud Carlos III (RTA, #RD16/0017/0020), the Spanish Ministry of Science, Innovation and Universities (RTI2018-099200-B-I00), the Catalan Goverment (Agency for Management of University and Research Grants [2017SGR696] and Department of Health [STL002/16/00250]; the European Regional Development Fund (project No. 01.2.2-LMT-K-718-02-0014) under grant agreement with the Research Council of Lithuania (LMTLT); and the Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A SpainFrance-Andorra programme (POCTEFA 2014-2020). MA-R is funded by a predoctoral Río Hortega contract from the Instituto de Salud Carlos III (ISCIII, CM19/00190), co-funded by the European Social Fund “Investing in your future”. OC-R is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP20/00165), co-funded by the Europeran Social Fund "Investing in your future". JM-P is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP18/00009), co-funded by the European Social Fund “Investing in your future”. JS is funded by a predoctoral PERIS contract (SLT002/16/00250) from the Catalan Government. MJ is a professor under the “Serra Hunter” programme (Generalitat de Catalunya
Format: application/pdf
Accés al document: http://hdl.handle.net/10256/19074
Llenguatge: eng
Editor: BMJ Publishing Group
Col·lecció: info:eu-repo/semantics/altIdentifier/doi/10.1136/gutjnl-2020-323371
info:eu-repo/semantics/altIdentifier/issn/0017-5749
info:eu-repo/semantics/altIdentifier/eissn/1468-3288
Drets: Reconeixement-NoComercial 4.0 Internacional
URI Drets: http://creativecommons.org/licenses/by-nc/4.0
Matèria: Intestins -- Microbiologia
Intestines -- Microbiology
Intestins -- Malalties
Intestines -- Diseases
Persones obeses
Overweight persons
Títol: Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways
Tipus: info:eu-repo/semantics/article
Repositori: DUGiDocs

Matèries

Autors