Item
Vil脿 Talleda, Pere
F脿brega i Soler, Llu铆s |
|
Universitat de Girona. Departament d鈥橝rquitectura i Tecnologia de Computadors | |
Farreras Casamort, Miquel | |
2024 November 4 | |
ENG- This thesis addresses key challenges in the optimization of network slicing in Beyond 5G (B5G) networks, focusing on the use of Graph Neural Networks (GNNs) for performance prediction and resource allocation. It is structured into three main parts: improvement of an existing GNN model for Key Performance Indicator (KPI) prediction, dataset creation for network slicing, and the creation of a GNN model for predicting network slicing KPIs.
The ultimate goal of this work is to build a model for predicting network slicing KPIs. GNNs models are a novel and powerful technique for accurately learning from graph-structured data, making them suitable for predicting network KPIs. To learn GNNs programming, the first part of this work describes the participation in a ITU challenge. Autonomous network management is explored, being essential for the dynamic environments expected in B5G networks. The limitations of traditional modeling tools and network simulators are also explored, proposing GNNs as an effective alternative due to their high accuracy and low computational requirements. A significant contribution is the enhancement of the RouteNet baseline model, achieving an improvement in prediction accuracy for larger networks, in comparison to the networks seen during training.
As the goal is to build a GNNs model for predicting network slicing KPIs, and a lack of data containing network slicing scenarios is identified, the second part presents a the creation of a network slicing dataset designed to support Artificial Intelligence (AI)-based performance prediction in B5G networks. This dataset, generated through a packet-level simulator, includes diverse network scenarios with varying topologies, slice instances, and traffic flows, capturing the complexities of Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communication (URLLC), and Massive Internet of Things (mIoT) slices. The dataset is a valuable resource for the research community, facilitating innovations in network slicing and resource management.
After creating the required data, the GNN model called GNNetSlice is developed in part three, introducing a novel model that leverages GNNs to predict the performance of network slices in the core and transport network. By adopting a data-driven approach, GNNetSlice balances prediction speed and accuracy. The model demonstrates high accuracy in predicting delay, jitter, and losses across various scenarios.
Overall, this thesis makes contributions to the field of network slicing, providing tools and datasets for efficient and accurate KPI prediction in B5G networks. The proposed models and datasets pave the way for more resilient and adaptive network management solutions, crucial for the next generation of mobile networks CAT- Aquesta tesi aborda els reptes clau en l鈥檕ptimitzaci贸 del network slicing en xarxes Beyond 5G (B5G), centrant-se en l鈥櫭簊 de Graph Neural Networks (GNNs) per a la predicci贸 del rendiment i l鈥檃ssignaci贸 de recursos. La tesi s鈥檈structura en tres parts principals: millora d鈥檜n model GNN existent per a la predicci贸 de Key Performance Indicators (KPIs), creaci贸 de conjunts de dades sobre network slicing i un model de GNN per predir KPIs de network slicing. L鈥檕bjectiu final d鈥檃quest treball 茅s construir un model per predir els KPIs de network slicing. Els models GNNs s贸n una t猫cnica nova i potent per aprendre amb precisi贸 a partir de dades estructurades en grafs, la qual cosa els fa adequats per predir KPIs de xarxa. Per aprendre la programaci贸 de GNNs, la primera part d鈥檃quest treball descriu la participaci贸 en un challenge organitzat per la ITU. S鈥檈xplora la gesti贸 aut貌noma de xarxes, que 茅s essencial per als entorns din脿mics de les xarxes B5G. Tamb茅 s鈥檈xploren les limitacions de les eines de modelatge tradicionals i dels simuladors de xarxa, proposant les GNNs com una alternativa efica莽 a causa de la seva alta precisi贸 i els seus relativament baixos requeriments computacionals. Una contribuci贸 significativa 茅s la millora del model base RouteNet, aconseguint una millora en la precisi贸 de predicci贸 per a xarxes m茅s grans, respecte les vistes durant l鈥檈ntrenament. Ja que l鈥檕bjectiu 茅s construir un model basat en GNNs per predir els KPIs de network slicing, i s鈥檌dentifica una manca de dades que continguin escenaris de network slicing, la segona part presenta la creaci贸 d鈥檜n conjunt de dades de network slicing dissenyat per donar suport a la predicci贸 del rendiment basada en Artificial Intelligence (AI) a les xarxes B5G. Aquest conjunt de dades, generat a trav茅s d鈥檜n simulador a nivell de paquets, inclou diversos escenaris de xarxa amb diferents topologies, inst脿ncies de slice i fluxos de tr脿nsit, capturant les complexitats dels tipus de slice Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communication (URLLC) i Massive Internet of Things (mIoT). El conjunt de dades 茅s un recurs valu贸s per a la comunitat investigadora, ja que facilita les innovacions en la gesti贸 de recursos i el network slicing. Despr茅s de crear les dades necess脿ries, el model GNN anomenat GNNetSlice es desenvolupa a la tercera part, introduint un nou model que aprofita GNNs per predir el rendiment dels network slices al core i la xarxa de transport. En adoptar un enfocament basat en dades, GNNetSlice equilibra la velocitat i la precisi贸 de predicci贸. El model demostra una gran precisi贸 a l鈥檋ora de predir retards, fluctuacions de retard i p猫rdues en diversos escenaris. En general, aquesta tesi fa contribucions al camp del network slicing, proporcionant eines i conjunts de dades per a una predicci贸 KPI eficient i precisa a les xarxes B5G. Els models i conjunts de dades proposats obren el cam铆 per a solucions de gesti贸 de xarxes m茅s resistents i adaptatives, crucials per a la propera generaci贸 de xarxes m貌bils Programa de Doctorat en Tecnologia |
|
http://hdl.handle.net/10803/693047 | |
http://hdl.handle.net/10256/25946 | |
eng | |
Universitat de Girona | |
L鈥檃cc茅s als continguts d鈥檃questa tesi queda condicionat a l鈥檃cceptaci贸 de les condicions d鈥櫭簊 establertes per la seg眉ent llic猫ncia Creative Commons: http://creativecommons.org/licenses/by/4.0/ | |
Bessons digitals
Gemelos digitales Digital Twins Xarxes Neuronals en Grafs Redes neuronales en grafos Graph Neural Networks Modelatge de xarxes Modelaje de redes Network modeling Rendiment de xarxes Rendimiento de redes Network performance B5G Simulaci贸 de xarxes Simulaci贸n de redes Network simulation Tall de xarxa Segmentaci贸n de red Network slicing 621.3 |
|
Network performance prediction using graph neural networks: application to network slicing | |
info:eu-repo/semantics/doctoralThesis | |
DUGiDocs |