Ítem
|
Fort, Marta
Sellarès i Chiva, Joan Antoni |
|
| 2007 | |
| We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites | |
| application/pdf | |
| Fort, M., i Sellares, J.A. (2007). Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces. 4th International Symposium on Voronoi Diagrams in Science and Engineering : 2007 : ISVD ’07, 74 - 83. Recuperat 29 setembre 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4276107 | |
| 0-7695-2869-4 | |
| http://hdl.handle.net/10256/3061 | |
| eng | |
| IEEE | |
|
Reproducció digital del document publicat a: http://dx.doi.org/10.1109/ISVD.2007.24 Articles publicats (D-IMA) |
|
| © 4th International Symposium on Voronoi Diagrams in Science and Engineering : 2007 : ISVD ’07, 2007, p. 74-83 | |
| Tots els drets reservats | |
|
Algorismes computacionals
Grafs, Teoria de Geometria computacional Poliedres Voronoi, Polígons de Computer algorithms Computational geometry Graph theory Polyhedra Voronoi diagrams |
|
| Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces | |
| info:eu-repo/semantics/article | |
| DUGiDocs |
