Ítem


Selected configuration interaction with truncation energy error and application to the Ne atom

Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown’s energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper

© Journal of Chemical Physics, 2006, vol. 125, núm. 1

American Institute of Physics

Autor: Bunge, Carlos F.
Data: 2006
Resum: Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown’s energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper
Format: application/pdf
Cita: Bunge, Carlos F. (2006). Selected configuration interaction with truncation energy error and application to the Ne atom. Journal of Chemical Physics 125 (1), 014107. Recuperat 27 desembre 2010, a http://link.aip.org/link/JCPSA6/v125/i1/p014107/s1
ISSN: 0021-9606 (versió paper)
1089-7690 (versió electrònica)
Accés al document: http://hdl.handle.net/10256/3199
Llenguatge: eng
Editor: American Institute of Physics
Col·lecció: Reproducció digital del document publicat a: http://dx.doi.org/10.1063/1.2207620
Articles publicats (D-Q)
És part de: © Journal of Chemical Physics, 2006, vol. 125, núm. 1
Drets: Tots els drets reservats
Matèria: Anàlisi d’error (Matemàtica)
Dinàmica molecular
Estructura atòmica
Estructura electrònica
Neó
Atomic structure
Electronic structure
Error analysis (Mathematics)
Molecular dynamics
Neon
Títol: Selected configuration interaction with truncation energy error and application to the Ne atom
Tipus: info:eu-repo/semantics/article
Repositori: DUGiDocs

Matèries

Autors