Ítem


Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization

To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values

© Journal of Chemical Physics, 2004, vol. 121, núm. 20, p. 9982-9992

American Institute of Physics

Autor: Theodoor De Jong, G.
Solà i Puig, Miquel
Visscher, Lucas T.
Bickelhaupt, Friedrich Matthias
Data: 2004
Resum: To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values
Format: application/pdf
Cita: Theodoor De Jong, G., Solà, M., Visscher, L., i Bickelhaupt, F.M. (2004). Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization. Journal of Chemical Physics, 121 (20), 9982-9992. Recuperat 28 març 2011,a http://link.aip.org/link/doi/10.1063/1.1792151
ISSN: 0021-9606 (versió paper)
1089-7690 (versió electrònica)
Accés al document: http://hdl.handle.net/10256/3312
Llenguatge: eng
Editor: American Institute of Physics
Col·lecció: Reproducció digital del document publicat a: http://dx.doi.org/10.1063/1.1792151
Articles publicats (D-Q)
És part de: © Journal of Chemical Physics, 2004, vol. 121, núm. 20, p. 9982-9992
Drets: Tots els drets reservats
Matèria: Anàlisi d’error (Matemàtica)
Aproximació, Teoria de l’
Enllaços químics
Funcional de densitat, Teoria del
Metà
Pal·ladi
Pertorbació (Matemàtica)
Polarització (Electricitat)
Reaccions d’addició
Addition reactions
Approximation theory
Chemical bonds
Density functionals
Error analysis (Mathematics)
Methane
Palladium
Perturbation (Mathematics)
Polarization (Electricity)
Títol: Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization
Tipus: info:eu-repo/semantics/article
Repositori: DUGiDocs

Matèries

Autors