Item
Universitat de Girona. Departament dâ€™ElectrÃ²nica, InformÃ tica i AutomÃ tica  
Esteva Payet, Santiago  
2003 March 13  
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of largescale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard nonlinealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible nondeterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki Â¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent nonlinear systems. And with the interaction with discrete events of the system the model can compose nonlinear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial startup and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the nonlinear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are:  The unity of order.  Control the system along a reachable path.  Control the system in a safe path.  Optimise the cost function.  Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighthtuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a twodimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using TagakiSugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a nonlinear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics Â¡V a domain where improvements are well accepted Â¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DCDC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & WonhamÂ¡Â¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for nonlinear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.  
application/pdf  
8468869570  
DL Gi.4452004 http://www.tdx.cat/TDX0422104185835 http://hdl.handle.net/10803/7724 

http://hdl.handle.net/10256/4928  
eng  
Universitat de Girona  
ADVERTIMENT. Lâ€™accÃ©s als continguts dâ€™aquesta tesi doctoral i la seva utilitzaciÃ³ ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, aixÃ com en activitats o materials dâ€™investigaciÃ³ i docÃ¨ncia en els termes establerts a lâ€™art. 32 del Text RefÃ³s de la Llei de Propietat IntelÂ·lectual (RDL 1/1996). Per altres utilitzacions es requereix lâ€™autoritzaciÃ³ prÃ¨via i expressa de la persona autora. En qualsevol cas, en la utilitzaciÃ³ dels seus continguts caldrÃ indicar de forma clara el nom i cognoms de la persona autora i el tÃtol de la tesi doctoral. No sâ€™autoritza la seva reproducciÃ³ o altres formes dâ€™explotaciÃ³ efectuades amb finalitats de lucre ni la seva comunicaciÃ³ pÃºblica des dâ€™un lloc aliÃ¨ al servei TDX. Tampoc sâ€™autoritza la presentaciÃ³ del seu contingut en una finestra o marc aliÃ¨ a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i Ãndexs.  
PWL
Dynamic systems Sistemes dinÃ mics Sistemas dinÃ¡micos Models locals Modelos locales 68  IndÃºstries, oficis i comerÃ§ dâ€™articles acabats. Tecnologia cibernÃ¨tica i automÃ tica 

Modelling, control and supervision for a class of hybrid systems  
info:eurepo/semantics/doctoralThesis  
DUGiDocs 