Item


Analyzing shapes as compositions of distances

We propose to analyze shapes as “compositions” of distances in Aitchison geometry as an alternate and complementary tool to classical shape analysis, especially when size is non-informative. Shapes are typically described by the location of user-chosen landmarks. However the shape – considered as invariant under scaling, translation, mirroring and rotation – does not uniquely define the location of landmarks. A simple approach is to use distances of landmarks instead of the locations of landmarks them self. Distances are positive numbers defined up to joint scaling, a mathematical structure quite similar to compositions. The shape fixes only ratios of distances. Perturbations correspond to relative changes of the size of subshapes and of aspect ratios. The power transform increases the expression of the shape by increasing distance ratios. In analogy to the subcompositional consistency, results should not depend too much on the choice of distances, because different subsets of the pairwise distances of landmarks uniquely define the shape. Various compositional analysis tools can be applied to sets of distances directly or after minor modifications concerning the singularity of the covariance matrix and yield results with direct interpretations in terms of shape changes. The remaining problem is that not all sets of distances correspond to a valid shape. Nevertheless interpolated or predicted shapes can be backtransformated by multidimensional scaling (when all pairwise distances are used) or free geodetic adjustment (when sufficiently many distances are used)

Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Manager: Mateu i Figueras, Glòria
Barceló i Vidal, Carles
Other contributions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Author: Boogaart, K. Gerald van den
Date: 2005 October
Abstract: We propose to analyze shapes as “compositions” of distances in Aitchison geometry as an alternate and complementary tool to classical shape analysis, especially when size is non-informative. Shapes are typically described by the location of user-chosen landmarks. However the shape – considered as invariant under scaling, translation, mirroring and rotation – does not uniquely define the location of landmarks. A simple approach is to use distances of landmarks instead of the locations of landmarks them self. Distances are positive numbers defined up to joint scaling, a mathematical structure quite similar to compositions. The shape fixes only ratios of distances. Perturbations correspond to relative changes of the size of subshapes and of aspect ratios. The power transform increases the expression of the shape by increasing distance ratios. In analogy to the subcompositional consistency, results should not depend too much on the choice of distances, because different subsets of the pairwise distances of landmarks uniquely define the shape. Various compositional analysis tools can be applied to sets of distances directly or after minor modifications concerning the singularity of the covariance matrix and yield results with direct interpretations in terms of shape changes. The remaining problem is that not all sets of distances correspond to a valid shape. Nevertheless interpolated or predicted shapes can be backtransformated by multidimensional scaling (when all pairwise distances are used) or free geodetic adjustment (when sufficiently many distances are used)
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.
Format: application/pdf
Citation: Boogaart, K.G. ’Analyzing shapes as compositions of distances’ a CODAWORK’05. Girona: La Universitat, 2005 [consulta: 2 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/658
ISBN: 84-8458-222-1
Document access: http://hdl.handle.net/10256/658
Language: eng
Publisher: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Rights: Tots els drets reservats
Subject: Formes (Matemàtica)
Distàncies
Title: Analyzing shapes as compositions of distances
Type: info:eu-repo/semantics/conferenceObject
Repository: DUGiDocs

Subjects

Authors