Item


Convex linear combination processes for compositions

Aitchison and Bacon-Shone (1999) considered convex linear combinations of compositions. In other words, they investigated compositions of compositions, where the mixing composition follows a logistic Normal distribution (or a perturbation process) and the compositions being mixed follow a logistic Normal distribution. In this paper, I investigate the extension to situations where the mixing composition varies with a number of dimensions. Examples would be where the mixing proportions vary with time or distance or a combination of the two. Practical situations include a river where the mixing proportions vary along the river, or across a lake and possibly with a time trend. This is illustrated with a dataset similar to that used in the Aitchison and Bacon-Shone paper, which looked at how pollution in a loch depended on the pollution in the three rivers that feed the loch. Here, I explicitly model the variation in the linear combination across the loch, assuming that the mean of the logistic Normal distribution depends on the river flows and relative distance from the source origins

Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.cat

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Manager: Mateu i Figueras, Glòria
BarcelĂł i Vidal, Carles
Other contributions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Author: Bacon Shone, John
Date: 2005 October
Abstract: Aitchison and Bacon-Shone (1999) considered convex linear combinations of compositions. In other words, they investigated compositions of compositions, where the mixing composition follows a logistic Normal distribution (or a perturbation process) and the compositions being mixed follow a logistic Normal distribution. In this paper, I investigate the extension to situations where the mixing composition varies with a number of dimensions. Examples would be where the mixing proportions vary with time or distance or a combination of the two. Practical situations include a river where the mixing proportions vary along the river, or across a lake and possibly with a time trend. This is illustrated with a dataset similar to that used in the Aitchison and Bacon-Shone paper, which looked at how pollution in a loch depended on the pollution in the three rivers that feed the loch. Here, I explicitly model the variation in the linear combination across the loch, assuming that the mean of the logistic Normal distribution depends on the river flows and relative distance from the source origins
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.cat
Format: application/pdf
Citation: Bacon Shone, J. ’Convex linear combination processes for compositions’ a CODAWORK’05. Girona: La Universitat, 2005 [consulta: 6 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/683
ISBN: 84-8458-222-1
Document access: http://hdl.handle.net/10256/683
Language: eng
Publisher: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Rights: Tots els drets reservats
Subject: Combinacions (MatemĂ tica)
Title: Convex linear combination processes for compositions
Type: info:eu-repo/semantics/conferenceObject
Repository: DUGiDocs

Subjects

Authors