Item


Thermodynamics and log–contrast analysis in fluid geochemistry

There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach

Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.cat

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Manager: Mateu i Figueras, Glòria
Barceló i Vidal, Carles
Other contributions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Author: Buccianti, Antonella
Nisi, Barbara
Vaselli, Orlando
Date: 2005 October
Abstract: There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.cat
Format: application/pdf
Citation: Buccianti, A.; Nisi, B.; Vaselli, O. ’Thermodynamics and log–contrast analysis in fluid geochemistry’ a CODAWORK’05. Girona: La Universitat, 2005 [consulta: 6 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/687
ISBN: 84-8458-222-1
Document access: http://hdl.handle.net/10256/687
Language: eng
Publisher: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Rights: Tots els drets reservats
Subject: Aigua -- Química
Nitrogen
Geoquímica -- Models matemàtics
Estadística matemàtica -- Informàtica
Title: Thermodynamics and log–contrast analysis in fluid geochemistry
Type: info:eu-repo/semantics/conferenceObject
Repository: DUGiDocs

Subjects

Authors