Item


Refinement criteria for global illumination using convex funcions

In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region

Geologische Vereinigung; Universitat de Barcelona, Equip de Recerca Arqueomètrica; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur.

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Manager: Thió i Fernández de Henestrosa, Santiago
Martín Fernández, Josep Antoni
Other contributions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Author: Rigau Vilalta, Jaume
Feixas Feixas, Miquel
Sbert, Mateu
Date: 2003 October 17
Abstract: In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region
Geologische Vereinigung; Universitat de Barcelona, Equip de Recerca Arqueomètrica; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur.
Format: application/pdf
Citation: Rigau Vilalta, Jaume; Feixas Feixas, Miquel; Sbert, M. ’Refinement criteria for global illumination using convex funcions’ a CODAWORK’03. Girona: La Universitat, 2003 [consulta: maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/695
ISBN: 84-8458-111-X
Document access: http://hdl.handle.net/10256/695
Language: eng
Publisher: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Rights: Tots els drets reservats
Subject: Funcions convexes
Title: Refinement criteria for global illumination using convex funcions
Type: info:eu-repo/semantics/conferenceObject
Repository: DUGiDocs

Subjects

Authors