Ítem
Daunis-i-Estadella, Pepus
Martín Fernández, Josep Antoni |
|
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada | |
Aguilar, Lucía
Barceló i Vidal, Carles |
|
29 maig 2008 | |
A compositional time series is obtained when a compositional data vector is observed at
different points in time. Inherently, then, a compositional time series is a multivariate
time series with important constraints on the variables observed at any instance in time.
Although this type of data frequently occurs in situations of real practical interest, a
trawl through the statistical literature reveals that research in the field is very much in its
infancy and that many theoretical and empirical issues still remain to be addressed. Any
appropriate statistical methodology for the analysis of compositional time series must
take into account the constraints which are not allowed for by the usual statistical
techniques available for analysing multivariate time series. One general approach to
analyzing compositional time series consists in the application of an initial transform to
break the positive and unit sum constraints, followed by the analysis of the transformed
time series using multivariate ARIMA models. In this paper we discuss the use of the
additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present
results from an empirical study designed to explore how the selection of the initial
transform affects subsequent multivariate ARIMA modelling as well as the quality of
the forecasts Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010. |
|
application/pdf | |
Aguilar, L.; Barceló Vidal, C. ’Multivariate ARIMA Compositional Time Series Analysis’ a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 12 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/722 | |
http://hdl.handle.net/10256/722 | |
eng | |
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada | |
Tots els drets reservats | |
Estadística matemàtica | |
Multivariate ARIMA Compositional Time Series Analysis | |
info:eu-repo/semantics/conferenceObject | |
DUGiDocs |