Ítem


A comparison of the alr and ilr transformations for kernel density estimation of compositional data

In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators

Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Director: Daunis-i-Estadella, Pepus
Martín Fernández, Josep Antoni
Altres contribucions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Autor: Chacón, J.E.
Martín Fernández, Josep Antoni
Mateu i Figueras, Glòria
Data: 29 maig 2008
Resum: In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
Format: application/pdf
Cita: Chacón, J.E.; MArtín Fernández, J.A.; Mateu i Figueras, G. ’A comparison of the alr and ilr transformations for kernel density estimation of compositional data’ a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 13 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/724
Accés al document: http://hdl.handle.net/10256/724
Llenguatge: eng
Editor: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Drets: Tots els drets reservats
Matèria: Correlació (Estadística)
Anàlisi multivariable
Kernel, Funcions de
Títol: A comparison of the alr and ilr transformations for kernel density estimation of compositional data
Tipus: info:eu-repo/semantics/conferenceObject
Repositori: DUGiDocs

Matèries

Autors