Ítem


Dynamic graphics of parametrically linked multivariate methods used in compositional data analysis

Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods

Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Director: Daunis-i-Estadella, Pepus
Martín Fernández, Josep Antoni
Altres contribucions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Autor: Greenacre, Michael J.
Data: 30 maig 2008
Resum: Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
Format: application/pdf
Cita: Greenacre, M.J. ’Dynamic graphics of parametrically linked multivariate methods used in compositional data analysis’ a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 15 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/747
Accés al document: http://hdl.handle.net/10256/747
Llenguatge: eng
Editor: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Drets: Tots els drets reservats
Matèria: Estadística
Anàlisi de correspondència
Títol: Dynamic graphics of parametrically linked multivariate methods used in compositional data analysis
Tipus: info:eu-repo/semantics/conferenceObject
Repositori: DUGiDocs

Matèries

Autors