Item
Barrabés Vera, Esther
Cors, Josep M. Pinyol i Pérez, Concepció Soler, Jaume |
|
2009 | |
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ϵ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ϵ ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system | |
application/pdf | |
0167-2789 | |
http://hdl.handle.net/10256/7552 | |
eng | |
Elsevier | |
Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.physd.2009.10.019 Articles publicats (D-IMA) |
|
© Physica D: Nonlinear Phenomena, 2010, vol. 239, núm. 3-4, p. 214-219 | |
Tots els drets reservats | |
Topologia
Topology Poliedres Polyhedra |
|
Highly eccentric hip-hop solutions of the 2N | |
info:eu-repo/semantics/article | |
DUGiDocs |