Item


The second law of thermodynamics and the global climate system : A review of the maximum entropy production principle

The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars

© Reviews of Geophysics, 2003, vol. 41, núm. 4

American Geophysical Union

Author: Ozawa, Hisashi
Ohmura, Atsumu
Lorenz, Ralph D.
Pujol i Sagaró, Toni
Date: 2003
Abstract: The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Format: application/pdf
ISSN: 8755-1209 (versió paper)
1944-9208 (versió electrònica)
Document access: http://hdl.handle.net/10256/8489
Language: eng
Publisher: American Geophysical Union
Collection: Reproducció digital del document publicat a: http://dx.doi.org/10.1029/2002RG000113
Articles publicats (D-F)
Is part of: © Reviews of Geophysics, 2003, vol. 41, núm. 4
Rights: Tots els drets reservats
Subject: Termodinàmica
Thermodynamic
Canvis climàtics
Climatic changes
Entropia
Entropy
Title: The second law of thermodynamics and the global climate system : A review of the maximum entropy production principle
Type: info:eu-repo/semantics/article
Repository: DUGiDocs

Subjects

Authors