Ítem


On the preservation of combinatorial types for maps on trees

We study the preservation of the periodic orbits of an A-monotone tree map f:T→T in the class of all tree maps g:S→S having a cycle with the same pattern as A. We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of ƒ into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees T and S (which need not be homeomorphic) are essentially preserved

Association des Annales de l’Institut Fourier

Autor: Alsedà i Soler, Lluís
Juher, David
Mumbrú i Rodríguez, Pere
Data: 2005
Resum: We study the preservation of the periodic orbits of an A-monotone tree map f:T→T in the class of all tree maps g:S→S having a cycle with the same pattern as A. We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of ƒ into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees T and S (which need not be homeomorphic) are essentially preserved
Format: application/pdf
Accés al document: http://hdl.handle.net/10256/8984
Llenguatge: eng
Editor: Association des Annales de l’Institut Fourier
Col·lecció: info:eu-repo/semantics/altIdentifier/issn/0373-0956
info:eu-repo/semantics/altIdentifier/eissn/1777-5310
Drets: Tots els drets reservats
Matèria: Òrbites
Orbits
Títol: On the preservation of combinatorial types for maps on trees
Tipus: info:eu-repo/semantics/article
Repositori: DUGiDocs

Matèries

Autors