Item


Simultaneous localization and mapping using single cluster probability hypothesis density filters

The majority of research in feature-based SLAM builds on the legacy of foundational work using the EKF, a single-object estimation technique. Because feature-based SLAM is an inherently multi-object problem, this has led to a number of suboptimalities in popular solutions. We develop an algorithm using the SC-PHD filter, a multi-object estimator modeled on cluster processes. This algorithm hosts capabilities not typically seen with feature-base SLAM solutions such as principled handling of clutter measurements and missed detections, and navigation with a mixture of stationary and moving landmarks. We present experiments with the SC-PHD SLAM algorithm on both synthetic and real datasets using an autonomous underwater vehicle. We compare our method to the RB-PHD SLAM, showing that it requires fewer approximations in its derivation and thus achieves superior performance.

En aquesta tesis es desenvolupa aquest algoritme a partir d’un filtre PHD amb un únic grup (SC-PHD), una tècnica d’estimació multi-objecte basat en processos d’agrupació. Aquest algoritme té unes capacitats que normalment no es veuen en els algoritmes de SLAM basats en característiques, ja que és capaç de tractar falses característiques, així com característiques no detectades pels sensors del vehicle, a més de navegar en un entorn amb la presència de característiques estàtiques i característiques en moviment de forma simultània. Es presenten els resultats experimentals de l’algoritme SC-PHD en entorns reals i simulats utilitzant un vehicle autònom submarí. Els resultats són comparats amb l’algoritme de SLAM Rao-Blackwellized PHD (RB-PHD), demostrant que es requereixen menys aproximacions en la seva derivació i en conseqüència s’obté un rendiment superior.

Universitat de Girona

Manager: Salvi, Joaquim
Clark, Daniel
Institut de Recerca en Visió per Computador i Robòtica
Other contributions: Universitat de Girona. Arquitectura i Tecnologia de Computadors
Author: Lee, Chee Sing
Date: 2015 September 1
Abstract: The majority of research in feature-based SLAM builds on the legacy of foundational work using the EKF, a single-object estimation technique. Because feature-based SLAM is an inherently multi-object problem, this has led to a number of suboptimalities in popular solutions. We develop an algorithm using the SC-PHD filter, a multi-object estimator modeled on cluster processes. This algorithm hosts capabilities not typically seen with feature-base SLAM solutions such as principled handling of clutter measurements and missed detections, and navigation with a mixture of stationary and moving landmarks. We present experiments with the SC-PHD SLAM algorithm on both synthetic and real datasets using an autonomous underwater vehicle. We compare our method to the RB-PHD SLAM, showing that it requires fewer approximations in its derivation and thus achieves superior performance.
En aquesta tesis es desenvolupa aquest algoritme a partir d’un filtre PHD amb un únic grup (SC-PHD), una tècnica d’estimació multi-objecte basat en processos d’agrupació. Aquest algoritme té unes capacitats que normalment no es veuen en els algoritmes de SLAM basats en característiques, ja que és capaç de tractar falses característiques, així com característiques no detectades pels sensors del vehicle, a més de navegar en un entorn amb la presència de característiques estàtiques i característiques en moviment de forma simultània. Es presenten els resultats experimentals de l’algoritme SC-PHD en entorns reals i simulats utilitzant un vehicle autònom submarí. Els resultats són comparats amb l’algoritme de SLAM Rao-Blackwellized PHD (RB-PHD), demostrant que es requereixen menys aproximacions en la seva derivació i en conseqüència s’obté un rendiment superior.
Format: application/pdf
Document access: http://hdl.handle.net/10803/323637
Language: eng
Publisher: Universitat de Girona
Subject: Enginyeria. Tecnologia
Indústries, oficis i comerç d’articles acabats. Tecnologia cibernètica i automàtica
Title: Simultaneous localization and mapping using single cluster probability hypothesis density filters
Type: doctoralThesis
Repository: TDX

Subjects

Authors