Ítem
Mateu i Figueras, Glòria
Barceló i Vidal, Carles |
|
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada | |
Bacon Shone, John | |
Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Consell Social de la Universitat de Girona; Ministerio de Ciencia i Tecnología.cat |
|
http://hdl.handle.net/2072/14701 | |
eng | |
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada | |
http://hdl.handle.net/10256/683 | |
Combinacions (Matemàtica) | |
Convex linear combination processes for compositions | |
info:eu-repo/semantics/conferenceObject | |
Recercat |