Ítem


A comparison of the alr and ilr transformations for kernel density estimation of compositional data

In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel densityestimation techniques in the context of compositional data analysis. Indeed, they gavetwo options for the choice of the kernel to be used in the kernel estimator. One ofthese kernels is based on the use the alr transformation on the simplex SD jointly withthe normal distribution on RD-1. However, these authors themselves recognized thatthis method has some deficiencies. A method for overcoming these dificulties based onrecent developments for compositional data analysis and multivariate kernel estimationtheory, combining the ilr transformation with the use of the normal density with a fullbandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu-Figueras (2006). Here we present an extensive simulation study that compares bothmethods in practice, thus exploring the finite-sample behaviour of both estimators

Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.

Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Director: Daunis i Estadella, Josep
Martín Fernández, Josep Antoni
Altres contribucions: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Autor: Chacón, J.E.
Martín Fernández, Josep Antoni
Mateu i Figueras, Glòria
Resum: In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel densityestimation techniques in the context of compositional data analysis. Indeed, they gavetwo options for the choice of the kernel to be used in the kernel estimator. One ofthese kernels is based on the use the alr transformation on the simplex SD jointly withthe normal distribution on RD-1. However, these authors themselves recognized thatthis method has some deficiencies. A method for overcoming these dificulties based onrecent developments for compositional data analysis and multivariate kernel estimationtheory, combining the ilr transformation with the use of the normal density with a fullbandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu-Figueras (2006). Here we present an extensive simulation study that compares bothmethods in practice, thus exploring the finite-sample behaviour of both estimators
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
Accés al document: http://hdl.handle.net/2072/14740
Llenguatge: eng
Editor: Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
Drets: Tots els drets reservats
Matèria: Correlació (Estadística)
Anàlisi multivariable
Kernel, Funcions de
Títol: A comparison of the alr and ilr transformations for kernel density estimation of compositional data
Tipus: info:eu-repo/semantics/conferenceObject
Repositori: Recercat

Matèries

Autors