Item
Barrabés Vera, Esther
Juher, David |
|
We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i |
|
http://hdl.handle.net/2072/227224 | |
eng | |
Hindawi Publishing Corporation | |
Attribution 3.0 Spain | |
http://creativecommons.org/licenses/by/3.0/es/ | |
Ã’rbites
Orbits Entropia topològica Topological entropy |
|
The minimum tree for a given zero-entropy period | |
info:eu-repo/semantics/article | |
Recercat |