Item
Ferrer i Comalat, Joan Carles
Bonet Carbó, Guillem Cassú i Serra, Elvira |
|
En el ámbito de la EconomÃa de la Empresa tiene mucha importancia el estudio de los gastos de producción E(Q) que se originarán en el proceso y que generalmente vendrán expresados matemáticamente por una dependencia lineal o cuadrática de las unidades Q que se proponen fabricar. Supondremos, además, que esta función está afectada por dos restricciones: una es de productividad, Q1 ≤ Q2 ≤ Q3 , y otra de limitación de gastos máximos permitidos, E(Q) ≤ EM . En el presente artÃculo partiremos de una función cuadrática nÃtida, en la cual justificaremos el signo de los coeficientes que hemos empleado. Después, para adentrarnos en el campo fuzzy, la generalizaremos con otra de coeficientes borrosos. Naturalmente, la nueva función borrosa ya no se expresará a través de una única curva, sino que estará constituida por un haz infinito de curvas nÃtidas, cada una de ellas con un determinado grado de posibilidad. Centramos nuestra atención en las curvas que llamamos central, inferior y superior. El núcleo de nuestro análisis consistirá básicamente en reducir paulatinamente los soportes de los coeficientes hasta hallar un cierto valor k del α-corte, de manera que a partir de él todas las curvas del haz borroso tengan sentido económico y cumplan las dos restricciones impuestas. En último lugar, y a través de un caso numérico, comprobaremos las deducciones teóricas que hemos obtenido en el análisis anterior | |
http://hdl.handle.net/2072/239696 | |
spa | |
Universidad de Buenos Aires. Centro de Investigación en MetodologÃa Borrosa aplicada a la Gestión y EconomÃa | |
Tots els drets reservats | |
Economia -- Models matemà tics
Economics -- Mathematical models Sistemes borrosos Fuzzy systems |
|
Análisis económico de una función cuadrática de gastos de producción con coeficientes borrosos | |
info:eu-repo/semantics/article | |
Recercat |