Item


From pine sawdust to cellulose nanofibres

Biorefinery technology is a current alternative to petroleum based industry to produce energy, chemicals and materials.The use of forest and agricultural lignocellulosic residues as raw materials to generate value-added products hasbecome a topic of great interestdue to their renewability and availability. Pine sawdust is a promising candidate as rawmaterial for biorefinery. This waste, which comes from the primary industrialization of wood, is available in largequantities, at low cost, and is currently open-airburned.The aim of this study was to obtain cellulose nanofiber (CNF) from pine sawdust. Delignification methods wereapplied to pulp until a kappa number lower than 1was achieved. CNF was produced by the combination of chemical(TEMPO-oxidation) pretreatment and mechanical destructuration in a homogenizer. Once CNF was produced atdifferent oxidation degrees, the degree of polymerization, cationic demand, carboxyl rate, and the yield of fibrillationwere determined with the purpose of assessing the effect of the oxidation degree on the final properties thereof.Finally,the suitability of using the obtained CNF as paper strength additive was studied through the assessment of themechanical properties increase of paper

Editura Academiei Romane

Author: Ehman, Nanci V.
Tarrés Farrés, Quim
Delgado Aguilar, Marc
Vallejos, María Evangelina
Felissia, Fernando
Area, María C.
Mutjé Pujol, Pere
Abstract: Biorefinery technology is a current alternative to petroleum based industry to produce energy, chemicals and materials.The use of forest and agricultural lignocellulosic residues as raw materials to generate value-added products hasbecome a topic of great interestdue to their renewability and availability. Pine sawdust is a promising candidate as rawmaterial for biorefinery. This waste, which comes from the primary industrialization of wood, is available in largequantities, at low cost, and is currently open-airburned.The aim of this study was to obtain cellulose nanofiber (CNF) from pine sawdust. Delignification methods wereapplied to pulp until a kappa number lower than 1was achieved. CNF was produced by the combination of chemical(TEMPO-oxidation) pretreatment and mechanical destructuration in a homogenizer. Once CNF was produced atdifferent oxidation degrees, the degree of polymerization, cationic demand, carboxyl rate, and the yield of fibrillationwere determined with the purpose of assessing the effect of the oxidation degree on the final properties thereof.Finally,the suitability of using the obtained CNF as paper strength additive was studied through the assessment of themechanical properties increase of paper
Document access: http://hdl.handle.net/2072/284757
Language: eng
Publisher: Editura Academiei Romane
Rights: Tots els drets reservats. Reproduced by permission of Romanian Academy, the owner of the publishing rights
Subject: Fibres de cel·lulosa
Cellulose fibers
Nanofibres
Nanofibers
Paper -- Fabricació
Papermaking
Title: From pine sawdust to cellulose nanofibres
Type: info:eu-repo/semantics/article
Repository: Recercat

Subjects

Authors