Ítem


Rewarding brain stimulation reverses the disruptive effect of amygdala damage on emotional learning

Intracranial self-stimulation (SS) in the lateral hypothalamus, a rewarding deep-brain stimulation, is able to improve acquisition and retention of implicit and explicit memory tasks in rats. SS treatment is also able to reverse cognitive deficits associated with aging or with experimental brain injuries and evaluated in a two-way active avoidance (2wAA) task. The main objective of the present study was to explore the potential of the SS treatment to reverse the complete learning and memory impairment caused by bilateral lesion in the lateral amygdala (LA). The effects of post-training SS, administered after each acquisition session, were evaluated on distributed 2wAA acquisition and 10-day retention in rats with electrolytic bilateral LA lesions. SS effect in acetylcholinestaresase (AchE) activity was evaluated by immunohistochemistry in LA-preserved and Central nuclei (Ce) of the amygdala of LA-damaged rats. Results showed that LA lesion over 40% completely impeded 2wAA acquisition and retention. Post-training SS in the LA-lesioned rats improved conditioning and retention compared with both the lesioned but non-SS treated and the non-lesioned control rats. SS treatment also seemed to induce a decrease in AchE activity in the LA-preserved area of the lesioned rats, but no effects were observed in the Ce. This empirical evidence supports the idea that self-administered rewarding stimulation is able to completely counteract the 2wAA acquisition and retention deficits induced by LA lesion. Cholinergic mechanisms in preserved LA and the contribution of other brain memory-related areas activated by SS could mediate the compensatory effect observed

This research was supported by an I+D (Mineco) grant (PSI2009-07491) and a Generalitat of Catalunya grant (2009SGR)

Elsevier

Director: Generalitat de Catalunya. Agència de Gestió d’Ajuts Universitaris i de Recerca
Ministerio de Ciencia e Innovación (Espanya)
Autor: Kádár García, Elisabeth
Ramoneda, Marc
Aldavert-Vera, Laura
Huguet i Blanco, Gemma
Morgado-Bernal, Ignacio
Segura-Torres, Pilar
Resum: Intracranial self-stimulation (SS) in the lateral hypothalamus, a rewarding deep-brain stimulation, is able to improve acquisition and retention of implicit and explicit memory tasks in rats. SS treatment is also able to reverse cognitive deficits associated with aging or with experimental brain injuries and evaluated in a two-way active avoidance (2wAA) task. The main objective of the present study was to explore the potential of the SS treatment to reverse the complete learning and memory impairment caused by bilateral lesion in the lateral amygdala (LA). The effects of post-training SS, administered after each acquisition session, were evaluated on distributed 2wAA acquisition and 10-day retention in rats with electrolytic bilateral LA lesions. SS effect in acetylcholinestaresase (AchE) activity was evaluated by immunohistochemistry in LA-preserved and Central nuclei (Ce) of the amygdala of LA-damaged rats. Results showed that LA lesion over 40% completely impeded 2wAA acquisition and retention. Post-training SS in the LA-lesioned rats improved conditioning and retention compared with both the lesioned but non-SS treated and the non-lesioned control rats. SS treatment also seemed to induce a decrease in AchE activity in the LA-preserved area of the lesioned rats, but no effects were observed in the Ce. This empirical evidence supports the idea that self-administered rewarding stimulation is able to completely counteract the 2wAA acquisition and retention deficits induced by LA lesion. Cholinergic mechanisms in preserved LA and the contribution of other brain memory-related areas activated by SS could mediate the compensatory effect observed
This research was supported by an I+D (Mineco) grant (PSI2009-07491) and a Generalitat of Catalunya grant (2009SGR)
Accés al document: http://hdl.handle.net/2072/296205
Llenguatge: eng
Editor: Elsevier
Drets: Tots els drets reservats
Matèria: Cervell -- Malalties -- Tractament
Brain -- Diseases -- Treatment
Cervell -- Estimulació
Brain stimulation
Neurobiologia
Neurobiology
Títol: Rewarding brain stimulation reverses the disruptive effect of amygdala damage on emotional learning
Tipus: info:eu-repo/semantics/article
Repositori: Recercat

Matèries

Autors