Item
Ministerio de Ciencia e Innovación (Espanya)
Generalitat de Catalunya. Agència de Gestió d’Ajuts Universitaris i de Recerca |
|
Sánchez-RodrÃguez, Daniel
Farjas Silva, Jordi Roura Grabulosa, Pere Ricart, Susagna Mestres, NarcÃs Obradors, Xavier Puig, Teresa |
|
The possibility of synthesizing functional oxide thin films at low temperature via combustion synthesis is analyzed both experimentally and numerically. To this aim, the decomposition of several oxide precursors [copper and cerium acetates, yttrium trifluoroacetate, and In2O3 and La0.7Sr0.3MnO3 (LSMO) nitrate based precursors] has been analyzed by thermal analysis techniques. It is shown that, although these precursors decompose via combustion when they are in the form of powders, their corresponding films show no evidence of combustion. The reason for this different behavior is clearly revealed with numerical simulations. Thin films will hardly experience combustion because the precursor front extinguishes before reaching the precursor-substrate interface leaving a "cool zone" hundreds of micrometers thick. In contrast, it is argued that thin oxide films can be obtained at temperatures lower than powders because of the enhanced gas transport mechanisms that usually limit the decomposition rate This work was partially funded by the Spanish Programa Nacional de Materiales through Projects MAT2011-28874-C02-01 and MAT2011-28874-C02-02, by the Consolider program Nanoselect, CSD2007-00041, and by the Generalitat de Catalunya Contract Nos. 2009SGR-185 and 2009SGR-770 |
|
http://hdl.handle.net/2072/296637 | |
eng | |
American Chemical Society (ACS) | |
Tots els drets reservats | |
Anà lisi tèrmica
Thermal analysis Capes fines d’òxid -- SÃntesi Oxide thin films -- Synthesis |
|
Thermal analysis for low temperature synthesis of oxide thin films from chemical solutions | |
info:eu-repo/semantics/article | |
Recercat |