Item
Ministerio de Ciencia e Innovación (Espanya) | |
Vert Company, Anna
Castro Gallegos, Jessica Ruiz Martínez, Santiago Tubert Juhé, Pere Escribano, Diego Ribó i Panosa, Marc Vilanova i Brugués, Maria Benito i Mundet, Antoni |
|
Ribonucleases are promising agents for use in anticancer therapy. Engineering a nuclear localization signal into the sequence of the human pancreatic ribonuclease has been revealed as a new strategy to endow this enzyme with cytotoxic activity against tumor cells. We previously described a cytotoxic human pancreatic ribonuclease variant, named PE5, which is able to cleave nuclear RNA, inducing the apoptosis of cancer cells and reducing the amount of P-glycoprotein in different multidrug-resistant cell lines. These results open the opportunity to use this ribonuclease in combination with other chemotherapeutics. In this work, we have investigated how to improve the properties of PE5 as an antitumor drug candidate. When attempting to develop a recombinant protein as a drug, two of the main desirable attributes are minimum immunogenicity and maximum potency. The improvements of PE5 have been designed in both senses. First, in order to reduce the potential immunogenicity of the protein, we have studied which residues mutated on PE5 can be reverted to those of the wild-type human pancreatic ribonuclease sequence without affecting its cytotoxicity. Second, we have investigated the effect of introducing an additional nuclear localization signal at different sites of PE5 in an effort to obtain a more cytotoxic enzyme. We show that the nuclear localization signal location is critical for the cytotoxicity. One of these variants, named NLSPE5, presents about a 10-fold increase in cytotoxicity respective to PE5. This variant induces apoptosis and kills the cells using the same mechanism as PE5 This work has been supported by Grant BFU2009-06935 from MICINN (Spain) and by Grant GRCT04 from the University of Girona. We are very grateful to Dr. Milica Pesic and Dr. Sabera Ruzdijićfor providing us with the NCI-H460/R cell line and to Dr. Ramon Colomer for providing us with the NCI/ ADR-RES cell line. A.V., J.C., and P.T. acknowledge their fellowship from MINEDU, Universitat de Girona, and MEC (Spain), respectively |
|
http://hdl.handle.net/2072/298885 | |
eng | |
American Chemical Society (ACS) | |
Tots els drets reservats | |
Càncer -- Tractament
Cancer -- Treatment Ribonucleases Medicaments antineoplàstics Antineoplastic agents |
|
Generation of new cytotoxic human ribonuclease variants directed to the nucleus | |
info:eu-repo/semantics/article | |
Recercat |