Warning: error_log(/dades/dugi/log//querys.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32
DUGi: Item | Recercat - Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling

Item


Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling

This study was conducted on the reduction reaction of the azo dye Reactive Black 5 by means of the Mn85Al15 particles prepared by melt-spinning and ball-milling processes. The morphology, the surface elementary composition and the phase structure of the powders were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The degradation efficiency of the ball milled powder was measured by using an ultraviolet-visible absorption spectrophotometer and the collected powder was analyzed by means of Fourier transform infrared spectroscopy technique to characterize the functional groups in the extract. The degradation of Reactive Black 5 and the analysis of the aromatic by-products were investigated by high performance liquid chromatography coupled with tandem mass spectrometry. The ball-milled powder shows higher degradation efficiency and the Reactive Black 5 solution was completely decolorized after 30 min. The degradation kinetics and the formation by-products depend on the pH and temperature of the solution. The analyses of the extracted product confirmed the cleavage of the (–N[double bond, length as m-dash]N–) bonds. Our findings are expected to pave the way for a new opportunity with regard to the functional applications of nanostructured metallic particles

Royal Society of Chemistry (RSC)

Author: Ben Mbarek, W.
Azabou, M.
Pineda, E.
Fiol Santaló, Núria ​
Escoda i Acero, Ma. Lluïsa
Suñol Martínez, Joan Josep
Khitouni, M.
Date: 2018 June 5
Abstract: This study was conducted on the reduction reaction of the azo dye Reactive Black 5 by means of the Mn85Al15 particles prepared by melt-spinning and ball-milling processes. The morphology, the surface elementary composition and the phase structure of the powders were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The degradation efficiency of the ball milled powder was measured by using an ultraviolet-visible absorption spectrophotometer and the collected powder was analyzed by means of Fourier transform infrared spectroscopy technique to characterize the functional groups in the extract. The degradation of Reactive Black 5 and the analysis of the aromatic by-products were investigated by high performance liquid chromatography coupled with tandem mass spectrometry. The ball-milled powder shows higher degradation efficiency and the Reactive Black 5 solution was completely decolorized after 30 min. The degradation kinetics and the formation by-products depend on the pH and temperature of the solution. The analyses of the extracted product confirmed the cleavage of the (–N[double bond, length as m-dash]N–) bonds. Our findings are expected to pave the way for a new opportunity with regard to the functional applications of nanostructured metallic particles
Document access: http://hdl.handle.net/2072/319851
Language: eng
Publisher: Royal Society of Chemistry (RSC)
Rights: Attribution-NonCommercial 3.0 Spain
Rights URI: http://creativecommons.org/licenses/by-nc/3.0/es/
Subject: Colorants azoics
Azo dyes
Title: Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling
Type: info:eu-repo/semantics/article
Repository: Recercat

Subjects


Warning: error_log(/dades/dugi/log//dugi.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32

Authors


Warning: error_log(/dades/dugi/log//dugi.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32


Warning: fopen(/dades/dugi/cache/f6c316489271e095901e0a3df56e9715_en.html) [function.fopen]: failed to open stream: Read-only file system in /dades/dugi/end_cache.php on line 2