Warning: session_start() [function.session-start]: open(/var/lib/php5/sess_d80e46d74f804faf04ee3c05e79666ed, O_RDWR) failed: Read-only file system (30) in /dades/dugi/start_cache.php on line 4

Warning: session_start() [function.session-start]: Cannot send session cookie - headers already sent by (output started at /dades/dugi/start_cache.php:4) in /dades/dugi/start_cache.php on line 4

Warning: session_start() [function.session-start]: Cannot send session cache limiter - headers already sent (output started at /dades/dugi/start_cache.php:4) in /dades/dugi/start_cache.php on line 4

Warning: Cannot modify header information - headers already sent by (output started at /dades/dugi/start_cache.php:4) in /dades/dugi/start_cache.php on line 7

Warning: error_log(/dades/dugi/log//querys.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32
DUGi: Ítem | Recercat - Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

Ítem


Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal

Wiley Open Access

Autor: Pellicer-Nàcher, Carles
Franck, Stéphanie
Gülay, Arda
Ruscalleda Beylier, Maël
Terada, Akihiko
Abu Al-Soud, Waleed
Hansen, Martin Asser
Sørensen, Søren J.
Smets, Barth F.
Data: 5 juny 2018
Resum: Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal
Accés al document: http://hdl.handle.net/2072/320472
Llenguatge: eng
Editor: Wiley Open Access
Drets: Attribution 3.0 Spain
URI Drets: http://creativecommons.org/licenses/by/3.0/es/
Matèria: Bacteris nitrificants
Sòls -- Microbiologia
Soil microbiology
Desnitrificació
Títol: Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics
Tipus: info:eu-repo/semantics/article
Repositori: Recercat

Matèries


Warning: error_log(/dades/dugi/log//dugi.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32

Autors


Warning: error_log(/dades/dugi/log//dugi.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32


Warning: fopen(/dades/dugi/cache/61b11cbcdbe7d34bf8c99b2305230892_.html) [function.fopen]: failed to open stream: Read-only file system in /dades/dugi/end_cache.php on line 2

Warning: Unknown: open(/var/lib/php5/sess_d80e46d74f804faf04ee3c05e79666ed, O_RDWR) failed: Read-only file system (30) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php5) in Unknown on line 0