Ítem


Characterisation of NEXT-DEMO using xenon Kα X-rays

The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~ 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using Kα X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from 22Na

This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economía y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008

Institute of Physics (IOP)

Autor: Lorca Galindo, David
Martín-Albo Simón, Justo
Laing, Andrew
Ferrario, Paola
Gómez Cadenas, Juan José
Álvarez Puerta, Vicente
Borges, Filipa I.G.M.
Camargo, Manuel A.
Cárcel García, Sara
Cebrián, Susana
Cervera Villanueva, Anselmo
Conde, Carlos A.N.
Dafni, Theopisti
Díaz Medina, José
Esteve, Raúl
Fernandes, L.M.P.
Ferreira, Antonio Luis
Freitas, Elisabete D.C.
Gehman, Victor M.
Goldschmidt, Azriel
Gómez, H.
González-Díaz, Diego
Gutiérrez, Rafael María
Hauptman, John M.
Hernando Morata, J.A.
Herrera, D.C.
Irastorza, Igor Garcia
Labarga, Luis A.
Liubarsky, Igor
Losada, Marta
Luzón, Gloria
Marí, A.
Martínez Lema, Gonzalo
Martínez Pérez, Alberto
Miller, Tom P.
Monrabal Capilla, Francesc
Monserrate, M.
Monteiro, Cristina M.B.
Mora, Francisco José
Moutinho, L.M.
Muñoz Vidal, J.
Nebot Guinot, Miquel
Nygren, David R.
Oliveira, Carlos A.B.
Pérez, Javier Martin
Pérez Aparicio, J.L.
Renner, Joshua
Ripoll Masferrer, Lluís
Rodríguez, Ángel Y.
Rodríguez Samaniego, Javier
Santos, Filomena P.
dos Santos, Joaquim M.F.
Seguí, Laura
Serra Díaz-Cano, Luis
Shuman, Derek B.
Simón Estévez, Ander
Sofka, C.
Sorel, Michel
Toledo, J.F.
Torrent Collell, Jordi
Tsamalaidze, Zviadi
Veloso, João F.C.A.
Webb, R.C.
White, James T.
Yahlali Haddou, Nadia
Data: 15 febrer 2020
Resum: The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~ 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using Kα X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from 22Na
This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economía y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008
Accés al document: http://hdl.handle.net/2072/372231
Llenguatge: eng
Editor: Institute of Physics (IOP)
Drets: Tots els drets reservats
Matèria: Detectors de radiació
Nuclear counters
Detectors
Física -- Instruments
Physical instruments
Electroluminescència
Electroluminescence
Títol: Characterisation of NEXT-DEMO using xenon Kα X-rays
Tipus: info:eu-repo/semantics/article
Repositori: Recercat

Matèries

Autors