Item
Rigau Vilalta, Jaume
Feixas Feixas, Miquel Sbert, Mateu |
|
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others | |
http://hdl.handle.net/2072/94969 | |
eng | |
IEEE | |
Tots els drets reservats | |
Complexitat computacional
Geometria integral Geometria computacional Percepci贸 de les formes Computational complexity Computational geometry Form perception Integral geometry |
|
Shape complexity based on mutual information | |
info:eu-repo/semantics/article | |
Recercat |