Item
Barrabés Vera, Esther
Mondelo, Josep M. Ollé Torner, Mercè |
|
2013 October 1 | |
This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits (POs) of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two POs, the linear approximations of the corresponding manifolds and a point in a given Poincaré section where the unstable and stable manifolds match. The method is applied to compute families of heteroclinic orbits between planar Lyapunov POs around the collinear equilibrium points of the restricted three-body problem in different scenarios. In one of them, for the Sun-Jupiter mass parameter, we provide energy ranges for which the transition between different resonances is possible | |
application/pdf | |
0951-7715 (versió paper) 1361-6544 (versió electrònica) |
|
http://hdl.handle.net/10256/12690 | |
eng | |
IOP Publishing | |
Versió preprint del document publicat a: http://dx.doi.org/10.1088/0951-7715/26/10/2747 Articles publicats (D-IMA) |
|
© Nonlinearity, 2013, vol. 26, núm. 10, p. 2747-2765 | |
Tots els drets reservats | |
Anà lisi numèrica
Numerical analysis Planetes -- Òrbites Planets -- Orbits Dinà mica estel·lar Stellar dynamics Mecà nica celest Celestial mechanics Sistemes hamiltonians Hamiltonian systems Sistemes dinà mics diferenciables Differentiable dynamical systems |
|
Numerical continuation of families of heteroclinic connections between periodic orbits in a Hamiltonian system | |
info:eu-repo/semantics/article | |
DUGiDocs |