Warning: session_start() [function.session-start]: open(/var/lib/php5/sess_5fe742614d3710fc96984337ae65c9be, O_RDWR) failed: Read-only file system (30) in /dades/dugi/start_cache.php on line 4

Warning: session_start() [function.session-start]: Cannot send session cookie - headers already sent by (output started at /dades/dugi/start_cache.php:4) in /dades/dugi/start_cache.php on line 4

Warning: session_start() [function.session-start]: Cannot send session cache limiter - headers already sent (output started at /dades/dugi/start_cache.php:4) in /dades/dugi/start_cache.php on line 4

Warning: Cannot modify header information - headers already sent by (output started at /dades/dugi/start_cache.php:4) in /dades/dugi/start_cache.php on line 7

Warning: error_log(/dades/dugi/log//querys.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32
DUGi: Ítem | DUGiDocs - Do machine learning methods used in data mining enhance the potential of decision support systems? A review for the urban water sector

Ítem


Do machine learning methods used in data mining enhance the potential of decision support systems? A review for the urban water sector

With sustainable development as their overarching goal, Urban Water System (UWS) managers need to take into account all social, economic, technical and environmental facets related to their decisions. Decision support systems (DSS) have been used widely for handling such complexity in water treatment, having a high level of popularity as academic exercises, although little validation and few full-scale implementations reported in practice. The objective of this paper is to review the application of artificial intelligence methods (mainly machine learning) to UWS and to investigate the integration of these methods into DSS. The results of the review suggest that artificial neural networks is the most popular method in the water and wastewater sectors followed by clustering. Bayesian networks and swarm intelligence/optimization have shown a spectacular increase in the water sector in the last 10 years, being the latest techniques to be incorporated but overtaking case-based reasoning. Whereas artificial intelligence applications to the water sector focus on modelling, optimization or data mining for knowledge generation, their encapsulation into functional DSS is not fully explored. Few academic applications have made it into decision making practice. We believe that the reason behind this misuse is not related to the methods themselves but rather to the disassociation between the fields of water and computer engineering, the limited practical experience of academics, and the great complexity inherently present

The authors would like to acknowledge the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007e2013 under REA agreement 289193 (SANITAS ITN). The authors thank the Spanish Ministry of Economy and Competitiveness (RYC-2013-14595, CTM2015-66892-R). The authors also acknowledge support from the Economy and Knowledge Department of the Catalan Government through the Consolidated Research Group (2014 SGR 291) - Catalan Institute for Water Research and (2014-SGR-1168)-LEQUIA-University of Girona

IOS Press

Director: Ministerio de Economía y Competitividad (Espanya)
Autor: Hadjimichael, Antonia
Comas Matas, Joaquim
Corominas Tabares, Lluís
Data: 1 desembre 2016
Resum: With sustainable development as their overarching goal, Urban Water System (UWS) managers need to take into account all social, economic, technical and environmental facets related to their decisions. Decision support systems (DSS) have been used widely for handling such complexity in water treatment, having a high level of popularity as academic exercises, although little validation and few full-scale implementations reported in practice. The objective of this paper is to review the application of artificial intelligence methods (mainly machine learning) to UWS and to investigate the integration of these methods into DSS. The results of the review suggest that artificial neural networks is the most popular method in the water and wastewater sectors followed by clustering. Bayesian networks and swarm intelligence/optimization have shown a spectacular increase in the water sector in the last 10 years, being the latest techniques to be incorporated but overtaking case-based reasoning. Whereas artificial intelligence applications to the water sector focus on modelling, optimization or data mining for knowledge generation, their encapsulation into functional DSS is not fully explored. Few academic applications have made it into decision making practice. We believe that the reason behind this misuse is not related to the methods themselves but rather to the disassociation between the fields of water and computer engineering, the limited practical experience of academics, and the great complexity inherently present
The authors would like to acknowledge the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007e2013 under REA agreement 289193 (SANITAS ITN). The authors thank the Spanish Ministry of Economy and Competitiveness (RYC-2013-14595, CTM2015-66892-R). The authors also acknowledge support from the Economy and Knowledge Department of the Catalan Government through the Consolidated Research Group (2014 SGR 291) - Catalan Institute for Water Research and (2014-SGR-1168)-LEQUIA-University of Girona
Format: application/pdf
Accés al document: http://hdl.handle.net/10256/14352
Llenguatge: eng
Editor: IOS Press
Col·lecció: info:eu-repo/semantics/altIdentifier/doi/10.3233/AIC-160714
info:eu-repo/semantics/altIdentifier/issn/0921-7126
MINECO/PE 2016-2019/CTM2015-66892-R
info:eu-repo/grantAgreement/EC/FP7/289193/EU/Sustainable and integrated urban water system management/SANITAS
Drets: Tots els drets reservats
Matèria: Aigua -- Depuració
Water -- Purification
Sanejament
Sanitation
Títol: Do machine learning methods used in data mining enhance the potential of decision support systems? A review for the urban water sector
Tipus: info:eu-repo/semantics/article
Repositori: DUGiDocs

Matèries


Warning: error_log(/dades/dugi/log//dugi.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32

Autors


Warning: error_log(/dades/dugi/log//dugi.log) [function.error-log]: failed to open stream: Read-only file system in /dades/dugi/lib/log/log.php on line 32


Warning: fopen(/dades/dugi/cache/5c1e2c723bde8734fa99a6165fcc1ef4_.html) [function.fopen]: failed to open stream: Read-only file system in /dades/dugi/end_cache.php on line 2

Warning: Unknown: open(/var/lib/php5/sess_5fe742614d3710fc96984337ae65c9be, O_RDWR) failed: Read-only file system (30) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php5) in Unknown on line 0