Ítem
|
Barrabés Vera, Esther
Juher, David |
|
| 2005 | |
|
We answer the following question: given any n∈ℕ, which is the minimum number of endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n? We prove that en=s1s2…sk−∑i=2ksisi+1…sk, where n=s1s2…sk is the decomposition of n into a product of primes such that si≤si+1 for 1≤i |
|
| application/pdf | |
|
0161-1712 (versió paper) 1687-0425 (versió electrònica) |
|
| http://hdl.handle.net/10256/8985 | |
| eng | |
| Hindawi Publishing Corporation | |
|
Reproducció digital del document publicat a: http://dx.doi.org/10.1155/IJMMS.2005.3025 Articles publicats (D-IMA) |
|
| International Journal of Mathematics and Mathematical Sciences, 2005, núm. 19, p. 3025-3033 | |
| Attribution 3.0 Spain | |
| http://creativecommons.org/licenses/by/3.0/es/ | |
|
Òrbites
Orbits Entropia topològica Topological entropy |
|
| The minimum tree for a given zero-entropy period | |
| info:eu-repo/semantics/article | |
| DUGiDocs |
