Ítem


C-H···O H-bonded complexes: how does basis set superposition error change their potential-energy surfaces?

Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary

American Institute of Physics

Autor: Salvador Sedano, Pedro
Simon i Rabasseda, Sílvia
Duran i Portas, Miquel
Dannenberg, J. J.
Resum: Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary
Accés al document: http://hdl.handle.net/2072/116812
Llenguatge: eng
Editor: American Institute of Physics
Drets: Tots els drets reservats
Matèria: Carboni
Energia de superfície
Enllaços químics
Estructura cristal·lina
Entalpia
Funcional de densitat, Teoria del
Hidrogen
Oxigen
Carbon
Chemical bonds
Density functionals
Enthalpy
Hydrogen
Layer structure (Solids)
Oxygen
Surface energy
Títol: C-H···O H-bonded complexes: how does basis set superposition error change their potential-energy surfaces?
Tipus: info:eu-repo/semantics/article
Repositori: Recercat

Matèries

Autors