Item
Carreras Pérez, Marc
Yuh, Junku Batlle i Grabulosa, Joan Ridao RodrÃguez, Pere |
|
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs | |
http://hdl.handle.net/2072/58627 | |
eng | |
IEEE | |
Tots els drets reservats | |
Algorismes computacionals
Aprenentatge per reforç Intel·ligència artificial Robots autònoms Xarxes neuronals (Informà tica) Vehicles submergibles Artificial intelligence Autonomous robots Computer algorithms Neural networks (Computer science) Reinforcement learning Submersibles |
|
A behavior-based scheme using reinforcement learning for autonomous underwater vehicles | |
info:eu-repo/semantics/article | |
Recercat |